• Title/Summary/Keyword: 최적설계문제

Search Result 1,061, Processing Time 0.028 seconds

Optimal Design of Structural Componets with Thickness and Shape Variatins (두께와 모양 변화를 통한 구조물의 최적설계)

  • 유영민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.119-126
    • /
    • 1985
  • 형상은 3차원이지만 2차원 문제로 이상화하여 해석할 수 있는 탄성구조물의 최적설계를 내연기관 연결봉(Connecting Rod)을 예제로 사용하여 진행하였다. 연결봉은 각 부위에서의 두께는 다르나 평면응력상태에 있다고 가정하였다. 연결봉의 질량을 최소화하기 위해 두께의 분포 및 2차원 모델 경계의 모양을 설계변수로 채택하였고 설계변수 및 응력치에 대한 제한조건을 적용하였다. 설계감도계수 계산을 위해 Variational Formulation, Material Derivative, Adjoint Variable이론을 도입하였고 최적화 방법으로는 Gradient Projection Method를 사용하였다. 최적설계 결과 현재 사용중인 연결봉 무게의 20%를 줄일 수 있음이 밝혀졌다.

추력기를 이용한 우주비행체 자세제어설계

  • Sun, Byung-Chan;Park, Yong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.186-195
    • /
    • 2005
  • This paper deals with attitude control design for a thruster system which is mainly used as a control system of space vehicles. Attitude controllers are designed based on a simple blowing-down thruster system structure. In order to consider severe time-delay effects of the thruster system during controller design, the control design problem is defined based on the corresponding limit cycle analysis. Optimal roll controllers and optimal pitch/yaw controllers are resulted from co-evolutionary optimum design processes for each flight phase. The control performances are verified by computer simulations.

  • PDF

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Optimal Design of Laminated Stiffened Composite Structures using a parallel micro Genetic Algorithm (병렬 마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계)

  • Yi, Moo-Keun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.30-39
    • /
    • 2008
  • In this paper, a parallel micro genetic algorithm was utilized in the optimal design of composite structures instead of a conventional genetic algorithm(SGA). Micro genetic algorithm searches the optimal design variables with only 5 individuals. The diversities from the nominal convergence and the re-initialization processes make micro genetic algorithm to find out the optimums with such a small population size. Two different composite structure optimization problems were proposed to confirm the efficiency of micro genetic algorithm compared with SGA. The results showed that micro genetic algorithm can get the solutions of the same level of SGA while reducing the calculation costs up to 70% of SGA. The composite laminated structure optimization under the load uncertainty was conducted using micro genetic algorithm. The result revealed that the design variables regarding the load uncertainty are less sensitive to load variation than that of fixed applied load. From the above-mentioned results, we confirmed micro genetic algorithm as a optimization method of composite structures is efficient.

Shape Design Optimization of Structure-Fluid Interaction Problems using NURBS Surfaces (NURBS 곡면을 이용한 구조-유체 연성문제의 형상 최적설계)

  • Jang, Hong-Lae;Kim, Min-Geun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.508-511
    • /
    • 2010
  • 본 논문에서는 정상상태 유체-구조 연성문제를 연속체 기반으로 정식화하고 유한요소법을 이용하여 완전 연성된 해를 구하였다. 대 변형을 고려하기 위하여 토탈 라그란지안 정식화를 사용하였으며 유체 및 구조의 비선형성이 고려되었다. 유체와 구조 영역의 형상을 NURBS 곡면을 이용하여 매개화하여 표현하였으며, 형상 최적화를 위해 효율적인 설계민감도 해석법인 애조인 기법을 이용하여 압력, 속도, 변위 등에 대한 설계민감도를 구하였다. 이를 이용하여 최소 컴플라이언스를 갖게 하는 구조물 내부의 유체영역의 설계 등의 수치예제를 통하여 개발된 방법론의 타당성을 확인하였다.

  • PDF

Optimal Design of Local Induction Heating Coils Based on the Sampling-Based Sensitivity (샘플링 기반 민감도를 이용한 국부 유도 가열용 코일의 최적 설계)

  • Choi, Nak-Sun;Kim, Dong-Wook;Kim, Dong-Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • This paper proposes a sampling-based sensitivity method for dealing with electromagnetic coupled design problems effectively. The black-box modeling technique is basically applied to obtain an optimum regardless of how strong the electromagnetic, thermal and structural analyses are coupled with each other. To achieve this, Kriging surrogate models are produced in a hyper-cubic local window with the center of a current design point. Then design sensitivity values are extracted from the differentiation of basis functions which consist of the models. The proposed method falls under a hybrid optimization method which takes advantages of the sampling-based and the sensitivity-based methods. Owing to the aforementioned feature, the method can be applied even to electromagnetic problems of which the material properties are strongly coupled with thermal or structural outputs. To examine the accuracy and validity of the proposed method, a strongly nonlinear mathematical example and a coil design problem for local induction heating are tested.

Development of Decision Support System for the Design of Steel Frame Structure (강 프레임 구조물 설계를 위한 의사 결정 지원 시스템의 개발)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.29-41
    • /
    • 2007
  • Structural design, like other complex decision problems, involves many trade-offs among competing criteria. Although mathematical programming models are becoming increasingly realistic, they often have design limitations, that is, there are often relevant issues that cannot be easily captured. From the understanding of these limitations, a decision-support system is developed that can generate some useful alternatives as well as a single optimum value in the optimization of steel frame structures. The alternatives produced using this system are "good" with respect to modeled objectives, and yet are "different," and are often better, with respect to interesting objectives not present in the model. In this study, we created a decision-support system for designing the most cost-effective moment-resisting steel frame structures for resisting lateral loads without compromising overall stability. The proposed approach considers the cost of steel products and the cost of connections within the design process. This system makes use of an optimization formulation, which was modified to generate alternatives of optimum value, which is the result of the trade-off between the number of moment connections and total cost. This trade-off was achieved by reducing the number of moment connections and rearranging them, using the combination of analysis based on the LRFD code and optimization scheme based on genetic algorithms. To evaluate the usefulness of this system, the alternatives were examined with respect to various design aspects.

Isogeometric Shape Design Optimization of Power Flow Problems at High Frequencies (고주파수 파워흐름 문제의 아이소-지오메트릭 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • Using an isogeometric approach, a continuum-based shape design optimization method is developed for steady state power flow problems at high frequencies. In case the isogeometric method is employed to the shape design optimization, the NURBS basis functions used in CAD geometric modeling are directly utilized to embed the exact geometry into the computational framework so that the design parameterization for shape optimization is much easier than that in the finite element method and consequently provides the enhanced smoothness of design perturbations. Thus, exact geometric models can be used in both the response and the shape sensitivity analyses, where normal vector and curvature are continuous over the whole design space so that enhanced shape sensitivity can be expected. Through numerical examples, the developed isogeometric sensitivity is compared with finite difference one to provide excellent agreement. Also, it turns out that the proposed method works very well in the shape optimization problems.

Process Optimal Design in Steady-State Metal Forming by Finite Finite Element Method-I Theoretical Considerations (유한요소법을 이용한 정상상태의 소성가공 공정의 최적설계-I - 이론적 고찰)

  • 전만수;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.443-452
    • /
    • 1992
  • 본 연구에서는 소성가공 공정의 최적설계를 위한 새로운 접근 방법이 소개 된다.이방법은 소성가공 공정의 유한요소해석 기술과 기계시스템의 최적설계 기술 에 바탕을 두고 있다. 벌칙 강소성유한요소법, 정상 상태의 소성가공 공정(steady -state metal forming process)을 위한 최적설계 문제의 수식화, 설계민감도의 해석 방법, 설계민감도의 정확성에 관한 고찰, 구배투영법(gradient projection emthod)등 이 본 논문에서 상세하게 소개된다.

Design of Optimized Fuzzy Controller for Rotary Inverted Pendulum System Using HFC-based Genetic Algorithms (계층적 공정 경쟁 유전자 알고리즘을 이용한 회전형 역 진자 시스템의 최적 Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.306-307
    • /
    • 2007
  • 본 논문은 계층적 공정 경쟁 유전자 알고리즘(Hierarchical Fair Competition-based Genetic Algorithms : HFCGA)을 이용하여 회전형 역 진자 시스템의 최적 Fuzzy 제어기 설계를 제안한다. 탐색 공간이 크거나 복잡한 최적해 탐색문제에 대해 조기 수렴 문제를 내제하고 있는 기존의 유전자 알고리즘의 해결방안으로 병렬 유전자 알고리즘이 개발되었으며, HFCGA는 병렬 유전자 알고리즘의 한 구조이다. 본 논문에서는 회전형 역 진자 시스템에 대해 LQR 제어기와 유사한 형태의 Fuzzy 제어기를 구성하고, HFCGA를 이용하여 최적의 제어기 파라미터들을 구한다. 그리고 시뮬레이션 및 실제 공정에 적용하여 LQR 제어기와 설계된 제어기의 성능을 평가한다.

  • PDF