본 논문은 확장된 이동최소제곱 유한차분법을 이용하여 1차원 Stefan 문제를 해석할 수 있는 수치기법이 제시한다. 이동하는 경계의 자유로운 묘사를 위해 요소망이나 그리드 없이 절점만을 사용하는 이동최소제곱 유한차분법을 사용하였으며, 계면경계의 특이성을 모형화하기 위해 Taylor 다항식에 쐐기함수를 도입했다. 지배방정식은 안정성이 높은 음해법(implicit method)을 이용하여 차분하였다. 미분의 특이성을 갖는 이동경계를 포함한 반무한 융해문제의 수치해석을 통해 확장된 이동최소제곱 유한차분법이 높은 정확성과 효율성을 갖는 것을 보였다.
본 논문은 확장된 이동최소제곱 유한차분법을 이용하여 1차원 Stefan 문제를 해석할 수 있는 새로운 수치기법이 제시한다. 이동하는 계면경계의 자유로운 수치적인 묘사를 위해 요소망이나 그리드 없이 절점만을 사용하는 이동최소제곱 유한차분법을 도입하고, 계면경계의 특이성을 모형화하기 위해 Taylor 다항식에 쐐기함수를 도입하여 확장했다. 지배방정식의 차분은 안정성을 보장해 주는 음해법(implicit method)을 이용한다. 이동경계를 포함한 반무한 융해문제, 실린더 형상의 고체화 문제의 수치해석을 통해 확장된 이동최소제곱 유한차분법이 높은 정확성과 효율성을 갖는 것을 보였다.
본 연구는 계면경계를 갖는 포텐셜 문제의 해석를 위한 이동최소제곱 기반의 확장된 유한차분법을 제시한다. 이동최소제곱법을 이용한 Taylor 전개로부터 얻어진 근사함수에 쐐기함수를 도입하여 계면경계의 특이성을 모사한다. 지배방정식은 요소나 그리드없이 절점만을 이용해 이산화한다. 계면경계의 특이성은 절점에서 구성되는 근사식에 매입되기 때문에 계면경계의 기하학적 모델링으로 발생하는 수치적인 어려움을 피할 수 있다. 계면경계 조건으로 인해 전체 계방정식에 추가되는 미지수는 없지만, 계방정식을 과결정 시스템으로 만드므로 강성도 행렬을 대칭화하여 미지수와 방정식의 개수를 일치시켰다. 이로 인한 계산량 증가는 계면경계 모델링의 간소화로 인한 수치적인 이득과 맞바꿀 수 있다. 다양한 수치적 검증을 통해 개발된 해석기법이 쐐기거동과 점프를 성공적으로 묘사할 뿐만 아니라 계면경계를 갖는 포텐셜 문제 효율적이고 정확하게 해석할 수 있음을 보였다.
크리깅 보간법은 지구통계학 분야에 주로 사용되는 보간법의 하나이다. 이 방법은 실험적 베리오그램과 이론적 베리오그램의 작성과 크리깅 보간법의 정식화에 관한 연구를 포함하고 있다. 종래의 응력복구를 위한 최소제곱법과 대조적으로, 가우스적분점에서의 응력데이타로부터 준정해를 얻기 위해 가중 최소제곱법에 기초를 둔다. 즉, 동일한 가중치를 사용하는 종래의 방식들과는 달리 가우스적분점에서의 응력값의 보간을 위하여 베리오그램 모델링을 통한 가중치가 결정된다. 한편, 분할된 요소망에 Zienkiewicz와 Zhu에 의해 제안된 SPR기법에 기초를 둔 사후오차평가를 통해 p-차수를 균등 또는 선택적으로 증가시키는 자동체눈 방식이 도입되었다. 이 방법의 정당성을 보기위해 인장력을 받는 개구부를 갖는 평판문제를 해석하였다. 또한, 기존의 최소제곱법과의 비교를 통한 크리깅보간법의 정당성을 보여 주었다.
MLS(Moving Least Squares) 차분법은 무요소법의 이동최소제곱법과 Taylor 전개를 이용하여 요소망의 제약 및 수치 적분이 없이 절점만을 이용하여 미분방정식을 수치해석할 수 있는 방법이다. 본 연구에서는 고체역학 문제의 동적해석을 위하여 MLS 차분법의 시간이력해석 알고리즘을 제시한다. 개발된 알고리즘은 Newmark 방법으로 시간적분을 하였으며, 강형식을 그대로 이산화하여 해석을 수행했다. 이동최소제곱법을 이용해 Taylor 전개식을 근사하여 실제 미분계산없이 미분근사식을 얻기 때문에 고차까지 Taylor 다항식의 차수를 증가하는 것이 용이하다. 1차원과 2차원 수치예제들을 통하여 동적해석을 위한 MLS 차분법의 정확성과 효율성을 검증하였다. 수치결과들이 정확해에 잘 수렴하였으며, 유한요소법(FEM)의 해석결과와 비교하여 떨림현상(oscillation) 및 주기성(periodicity) 오차에 대해 보다 안정적인 모습을 보였다.
광학계의 파면오차는 광학계의 성능을 나타내는 주요 지표이며, 광학면의 변형에 의해 발생한다. 광기계의 개발에 있어서 주요 하중조건에서 발생하는 파면오차 양은 중요 규격으로 설정되고 관리되어 진다. 광학면의 변형은 유한요소해석 등의 발달과 더불어 정확한 수준까지 계산할 수 있게 되었다. 유한요소해석 결과로부터 파면오차를 계산하기 위해서는 광학면에서의 변형량을 근사하고 분석해야 한다. 이를 위해 추가적인 격자나 요소망으로 결과를 변화하여 근사하는 방법이 사용되고 있으나, 격자 구성의 번거로움과 변환으로 인한 오차 발생 소지를 가지고 있다. 본 연구에서는 추가적인 격자의 구성없이 절점 정보만으로 효과적인 근사를 할 수 있는 이동 최소제곱 근사법을 사용하여 변형량을 근사하고 파면오차를 계산하는 방법을 제안하였다. 제안된 방법의 효용성을 보이기 위하여 해양탑재체 스캔 미러의 자중에 의한 파면오차를 계산하였고, 기존의 방법과 비교 분석하였다.
본 연구에서는 미분 가능한 함수가 Taylor 전개로 표현되고 그 계수들은 주어진 함수와 미분에 대한 근사값을 제공할 수 있다는 점에 착안하여 m차 Taylor 다항식을 구성하고 이동최소제곱법을 이용하여 그 계수들을 구했다. 계산된 근사함수와 미분을 콜로케이션 개념을 바탕으로 균열 문제를 포함하는 고체문제에 대한 지배 미분방정식에 적용하여 차분식 형태의 이산화된 계방정식을 구성하였다. 본 연구의 해석기법은 격자망(grid)에 의존적이고 근사함수가 없는 유한차분법과 형상함수의 미분과 약형식의 적분산정, 필수경계조건 처리가 어려운 Galerkin법 기반의 무요소법의 단점을 효과적으로 극복한 새로운 수치기법이다.
유한요소법(Finite Element Methods)은 지난 수십 년 동안 다양한 공학문제를 해석하는 주요 수치해석기법으로서, 지속적으로 연구$\cdot$개발되어 오늘에 이르고 있다. 그러나, 유한요소법은 계산을 위하여 요소망을 구성해야 하고 일부의 문제에 대하여서는 요소망을 재구성하는 등 특별한 처리기법과 계산의 소요가 필요하다. 이와같은 단점을 극복하기 위하여 무요소법(Meshfree Methods)이라 불리우는 일단의 수치해석 기법들이 고안되었다. 무요소법은 요소를 사용하지 않고 절점(node)만을 이용하여 함수를 근사하는 수치해석기법이다. 본 논문에서는 무요소법이 고안된 배경과 그 연산구조를 소개하고 무요소법의 대표적인 방법들인 Smoothed Particle Hydrodynamics(SPH)방법, 무요소 갤러킨 방법(Meshfree Galerkin Methods) 그리고 무요소 선점법(Meshfree Point Collocation Methods)의 기본 개념과 이들 수치해석기법의 방법론을 알아본다. 그리고 이들 방법의 장단점과 그 적용 예를 통하여 무요소 계산법의 유효함을 보인다.
A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, an inner-front creation algorithm is proposed, in which the sizes, positions, and number of new inner-fronts during the optimization process can be globally and consistently identified. To update the level set function during the optimization process, the least-squares finite element method is employed. As demonstrative examples for the flexibility and usefulness of the proposed method, the level set based topology optimization considering lightweight design of 3D shell structure is carried out.
We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor $K_I$ is demonstrated and the crack propagation in a plate is simulated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.