• Title/Summary/Keyword: 최소제곱 유한요소법

Search Result 13, Processing Time 0.023 seconds

Analysis of 1-D Stefan Problem Using Extended Moving Least Squares Finite Difference Method (확장된 이동최소제곱 유한차분법을 이용한 1D Stefan문제의 해석)

  • Yoon, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.308-313
    • /
    • 2009
  • 본 논문은 확장된 이동최소제곱 유한차분법을 이용하여 1차원 Stefan 문제를 해석할 수 있는 수치기법이 제시한다. 이동하는 경계의 자유로운 묘사를 위해 요소망이나 그리드 없이 절점만을 사용하는 이동최소제곱 유한차분법을 사용하였으며, 계면경계의 특이성을 모형화하기 위해 Taylor 다항식에 쐐기함수를 도입했다. 지배방정식은 안정성이 높은 음해법(implicit method)을 이용하여 차분하였다. 미분의 특이성을 갖는 이동경계를 포함한 반무한 융해문제의 수치해석을 통해 확장된 이동최소제곱 유한차분법이 높은 정확성과 효율성을 갖는 것을 보였다.

  • PDF

Analysis of Moving Boundary Problem Using Extended Moving Least Squares Finite Difference Method (확장된 이동최소제곱 유한차분법을 이용한 이동경계문제의 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2009
  • This paper presents a novel numerical method based on the extended moving least squares finite difference method(MLS FDM) for solving 1-D Stefan problem. The MLS FDM is employed for easy numerical modelling of the moving boundary and Taylor polynomial is extended using wedge function for accurate capturing of interfacial singularity. Difference equations for the governing equations are constructed by implicit method which makes the numerical method stable. Numerical experiments prove that the extended MLS FDM show high accuracy and efficiency in solving semi-infinite melting, cylindrical solidification problems with moving interfacial boundary.

Intrinsically Extended Moving Least Squares Finite Difference Method for Potential Problems with Interfacial Boundary (계면경계를 갖는 포텐셜 문제 해석을 위한 내적확장된 이동최소제곱 유한차분법)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.411-420
    • /
    • 2009
  • This study presents an extended finite difference method based on moving least squares(MLS) method for solving potential problems with interfacial boundary. The approximation constructed from the MLS Taylor polynomial is modified by inserting of wedge functions for the interface modeling. Governing equations are node-wisely discretized without involving element or grid; immersion of interfacial condition into the approximation circumvents numerical difficulties owing to geometrical modeling of interface. Interface modeling introduces no additional unknowns in the system of equations but makes the system overdetermined. So, the numbers of unknowns and equations are equalized by the symmetrization of the stiffness matrix. Increase in computational effort is the trade-off for ease of interface modeling. Numerical results clearly show that the developed numerical scheme sharply describes the wedge behavior as well as jumps and efficiently and accurately solves potential problems with interface.

Stress Recovery Technique by Ordinary Kriging Interpolation in p-Adaptive Finite Element Method (적응적 p-Version 유한요소법에서 정규 크리깅에 의한 응력복구기법)

  • Woo, Kwang Sung;Jo, Jun Hyung;Lee, Dong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.677-687
    • /
    • 2006
  • Kriging interpolation is one of the generally used interpolation techniques in Geostatistics field. This technique includes the experimental and theoretical variograms and the formulation of kriging interpolation. In contrast to the conventional least square method for stress recovery, kriging interpolation is based on the weighted least square method to obtain the estimated exact solution from the stress data at the Gauss points. The weight factor is determined by variogram modeling for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. In addition to this, the p-level is increased non-uniformly or selectively through a posteriori error estimation based on SPR (superconvergent patch recovery) technique, proposed by Zienkiewicz and Zhu, by auto mesh p-refinement. The cut-out plate problem under tension has been tested to validate this approach. It also provides validity of kriging interpolation through comparing to existing least square method.

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

Wave-Front Error Reconstruction Algorithm Using Moving Least-Squares Approximation (이동 최소제곱 근사법을 이용한 파면오차 계산 알고리즘)

  • Yeon, Jeoung-Heum;Kang, Gum-Sil;Youn, Heong-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.359-365
    • /
    • 2006
  • Wave-front error(WFE) is the main parameter that determines the optical performance of the opto-mechanical system. In the development of opto-mechanics, WFE due to the main loading conditions are set to the important specifications. The deformation of the optical surface can be exactly calculated thanks to the evolution of numerical methods such as the finite element method(FEM). To calculate WFE from the deformation results of FEM, another approximation of the optical surface deformation is required. It needs to construct additional grid or element mesh. To construct additional mesh is troublesomeand leads to transformation error. In this work, the moving least-squares approximation is used to reconstruct wave front error It has the advantage of accurate approximation with only nodal data. There is no need to construct additional mesh for approximation. The proposed method is applied to the examples of GOCI scan mirror in various loading conditions. The validity is demonstrated through examples.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

Development of meshfree particle Methods (무요소 계산법의 발전과 전개)

  • Lee, Jin-Ho
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.49-66
    • /
    • 2005
  • Finite element Methods(FEM) have been the primary computational methodologies in science and engineering computations for more than half centuries. One of the main limitations of the finite element approximations is that they need mesh which is an artificial constraint, and they need remeshing to solve in some special problems. The advantages in meshfree Methods is to develop meshfree interpolant schemes that only depends on particles, so they relieve the burden of remeshing and successive mesh generation. In this paper we describe the development of meshfree particle Methods and introduce the numerical schemes for Smoothed Particle hydrodynamics, meshfree Galerkin Methods and meshfree point collocation mehtods. We discusse the advantages and the shortcomings of these Methods, also we verify the applicability and efficiency of Meshfree Particle Methods.

  • PDF

Topology Optimization of Shell Structures Using Adaptive Inner-Front Level Set Method (AIFLSM) (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.354-359
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, an inner-front creation algorithm is proposed, in which the sizes, positions, and number of new inner-fronts during the optimization process can be globally and consistently identified. To update the level set function during the optimization process, the least-squares finite element method is employed. As demonstrative examples for the flexibility and usefulness of the proposed method, the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF

Finite 'crack' element method (균열 유한 요소법)

  • Cho, Young-Sam;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.551-556
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor $K_I$ is demonstrated and the crack propagation in a plate is simulated.

  • PDF