• Title/Summary/Keyword: 촬영조건

Search Result 645, Processing Time 0.035 seconds

The Research of Comparison Evaluation on the Decline in Artifact Using Respiratory Gating System in PET-CT (PET-CT 검사 시 호흡동조 시스템을 이용한 인공물 감소에 대한 비교 평가)

  • Kim, Jin-Young;Lee, Seung Jae;jung, Suk;Park, Min-Soo;Kang, Chun-Goo;Im, Han-Sang;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.63-67
    • /
    • 2015
  • Purpose Among various causes that influence image quality degradation, various methods for decrease in Artifact occurred by respiration of patients are being used. Among them, this study intended to evaluate CTAC Shift correction method and additional scan compare to the Scan(Q static scan) using respiratory gated system. Materials and Methods This study was conducted on 10 patients, and used PET-CT Discovery 710 (GE Healthcare, MI, USA) and Varian's RPM system. 5.18 Mbq per kg of $^{18}F$-FDG was injected on patients, asked them to take a rest for 1 hour in the bed, and conducted test after urination. Images were visualized through Q static scan, CTAC Shift correction method, Additional scan based on the Whole body scan(WBS) with Artifact. Decrease in Artifact was compared in each image, conducted Gross Evalution, and measured changes of SUVmax. Results For image obtained through the CTAC Shift correction method through WBS with Artifact, 12~56%, Q static scan image showed 17~54% of change rate and Additional Scan showed -27~46% of change rate. In Blind Test, the CTAC Shift correction image showed the highest point with 4 points, Q static scan image showed 3.5 points, and Additional scan image showed 3.4 points. The standardized WBS scan through Oneway ANOVA and three types of Scan method showed significant difference(p<0.05), and did not show significant difference between the three Scan methods(p>0.05). However, the three Scan methods showed significant difference in Blind test. Conclusion Additional scan and Q static scan require more time than the CTAC Shift correction method, there is concern about excessive exposure to patients by CT rescan and Q static scan is difficult to apply on patients with inconsistent respiration or irregular respiration cycle due to pain. For CTAC Shift correction method, limited correction is possible and the range is limited as well. It is considered as a useful method of improving diagnostic value when hospitals use the system appropriately and develop various advantageous factors of each method.

  • PDF

Study for Automatic Exposure Control Technique (AEC) in SPECT/CT for Reducing Exposure Dose and Influencing Image Quality (SPECT/CT에서 자동노출제어(AEC)를 이용함으로써 얻어지는 영상의 질 평가와 피폭선량 감소에 관한 고찰)

  • Yoon, Seok-Hwan;Lee, Sung-Hwan;Cho, Seong-Wook;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.33-38
    • /
    • 2014
  • Purpose Auto exposure control (AEC) in SPECT/CT automatically controls the exposure dose (mA) according to patient's shape and size. The aim of this study was to evaluate the effect of AEC in SPECT/CT on exposure dose reduction and image quality. Materials and Methods The model of SPECT/CT used in this study was Discovery 670 (GE, USA), Smart mA for AEC; and $^{99m}Tc$ as a radioisotope. To compare SPECT and CT images by CT exposure dose variation, we used a standard technique set at 80, 100, 120, 140 kVp, 10, 30, 50, 100, 150, 200, 250 mA, and AEC at 80, 100, 120, 140 kVp, 10-250 mA. To evaluate resolution and contrast of SPECT images, triple line phantom and flangeless Esser PET phantom were used. For CT images, noise and uniformity were checked by anthropomrphic chest phantom. For dose evaluation to find DLP value, anthropomorphic chest phantom was used and the CT protocol of torso was applied by standard technique (120 kVp, 100 mA) and AEC (120 kVp, 10-250 mA). Results When standard and AEC were applied, the resolutions at SPECT images with attenuation correction (AC) were the same as FWHM by center 3.65 mm, left 3.48 mm, right 3.61 mm. Contrasts of standard and AEC showed no significant difference: standard 53.5, 29.8, 22.5, 15.8, 6.0, AEC 53.5, 29.6, 22.4, 15.7, 6.1 In CT images, noise values at standard and AEC were 15.4 and 18.5 respectively. The application of AEC increases noise but the value of coefficient variation were 33.8, 24.9 respectively, obtaining uniform noise image. The values of DLP at standard and AEC were 426.78 and 352.09 each, which shows that the application of AEC decreases exposure dose more than standard by approximately 18%. Conclusion The results of our study show that there was no difference of AC in SPECT images based on the CT exposure dose variation at SPECT/CT images. It was found that the increased CT exposure dose leads to the improvement of CT image quality but also increases the exposure dose. Thus, the use of AEC in SPECT/CT contributes to obtaining equal AC SPECT images, and uniform noise in CT images while reducing exposure dose.

  • PDF

Evaluation of the combination of Bone Scan Image and Pelvic X-ray Image (뼈 검사 영상과 골반 X선 영상의 결합 유용성 평가)

  • Lee, Choong Woon;You, Yeon Wook;Kim, Yong Keun;Weon, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 2018
  • Purpose The introduction of bone scan has been reported as a useful tool in the diagnosis, treatment, and treatment response of skeletal disease. The purpose of this study is to improve the anatomical information and tolerance of the bone by combining bone scan and pelvic X-ray without additional radiation exposure. Materials and Methods From November 2015 to August 2016, 236 patients(64 men and 172 women, average age $50.96{\pm}15.39years$) take Bone scan and Pelvis AP(Anteroposterior) X-ray scan at the National Cancer Center. The scan equipment was a gamma camera, Symbia Ecam (SIEMENS, Germany), and a digital x-ray, DRS-800 (Listem, Korea). Osirix version 3.8.1 (Osirix, USA) and Stata/SE version 14.0 (StataCorp, USA) were used for image combination and analysis. The patient was intravenously injected with $^{99m}Tc-DPD$ (740 MBq), and the scan was performed 2 to 4 hours later. Gamma camera image acquisition were Matrix size $256{\times}1024$, Zoom 1.00, and scan speed 17 cm/min. The digital X-ray was made with a collimator size of $14^{{\prime}{\prime}}{\times}17^{{\prime}{\prime}}$, 77 kVp (60 to 97 kVp) and an average of 30 mAs (20 to 48). ASIS and pubic symphysis Select virtual points then Combine three virtual points and pelvic contour lines. The acquired images were evaluated by three radiologists who worked for more than 5 years in the nuclear medicine department. Results Of the total 236 patients, 216 (91.53%) were matched. The median and range (min~max) of the age were 67 (46~81) years old in the unmatched group and 52 (22~87) years old in the matched group, The Wilcoxon rank-sum test was performed to determine whether age was different between the two groups. As a result, the age difference between the two groups was statistically significant at p < 0.0001. Of the 64 men, 60 (93.75%) were match and of the 172 women, 156 (93.75%) were match. There was no statistically significant difference according to gender(p = 0.4542). Of the 54 patients without pelvic lesions, 54 (100.00%) were match, and 162 (89.01%) of 182 patients with pelvic lesions were match. There was a statistically significant difference according to the presence of pelvic lesions. Conclusion There are many variables in the combination of bone scan and pelvic X-ray imaging, and the patient's age and pelvic lesion may have some effect on the image combination. This study is expected to be useful for the diagnosis of pelvic osteosarcoma of children without radiation exposure. It is expected that this combination of images will help to develop the nuclear medicine image.

Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy (영상유도 양성자치료를 위한 콘빔 CT 재구성 알고리즘: 기하학적 보정방법에 관한 연구)

  • Kim, Jin-Sung;Cho, Min-Kook;Cho, Young-Bin;Youn, Han-Bean;Kim, Ho-Kyung;Yoon, Myoung-Geun;Shin, Dong-Ho;Lee, Se-Byeung;Lee, Re-Na;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • According to improved radiation therapy technology such as IMRT and proton therapy, the accuracy of patient alignment system is more emphasized and IGRT is dominated research field in radiation oncology. We proposed to study the feasibility of cone-beam CT system using simple x-ray imaging systems for image guided proton therapy at National Cancer Center. 180 projection views ($2,304{\times}3,200$, 14 bit with 127 ${\mu}m$ pixel pitch) for the geometrical calibration phantom and humanoid phantoms (skull, abdomen) were acquired with $2^{\circ}$ step angle using x-ray imaging system of proton therapy gantry room ($360^{\circ}$ for 1 rotation). The geometrical calibration was performed for misalignments between the x-ray source and the flat-panel detector, such as distances and slanted angle using available algorithm. With the geometrically calibrated projection view, Feldkamp cone-beam algorithm using Ram-Lak filter was implemented for CBCT reconstruction images for skull and abdomen phantom. The distance from x-ray source to the gantry isocenter, the distance from the flat panel to the isocenter were calculated as 1,517.5 mm, 591.12 mm and the rotated angle of flat panel detector around x-ray beam axis was considered as $0.25^{\circ}$. It was observed that the blurring artifacts, originated from the rotation of the detector, in the reconstructed toomographs were significantly reduced after the geometrical calibration. The demonstrated CBCT images for the skull and abdomen phantoms are very promising. We performed the geometrical calibration of the large gantry rotation system with simple x-ray imaging devices for CBCT reconstruction. The CBCT system for proton therapy will be used as a main patient alignment system for image guided proton therapy.

  • PDF

A Study of Below Knee Surrounding Dose depends on whether Using Collimator Shielding or not while Percutaneous Coronary Intervention (경피적 관상동맥 중재술 시 차폐 유·무에 따른 슬 하부 주변부 선량에 관한 연구)

  • Park, Jae Jin;Ko, Seong Jin;Kang, Se Sik;Kim, Chang Soo;Kim, Jung Hoon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.353-358
    • /
    • 2013
  • Recently, the Percutaneous Coronary Intervention has become a main treatment for treating Coronary because of increase of Circulatory Disease. Because of this reason, the increase of intervention using radiation causes the radiation exposure to workers. Therefore, the latent radiation injury can be increased. Thus, this study/experiment measured around under knee whether using radiation collimator shielding or not. We measured the exposure does by the experiment methods which are using 60kV, 200mA, and 10ms of Automatic exposure conditions and using the major method of the Cinefluography of Coronary in our hospital. As the result of right coronary artery test cases, LAO $30^{\circ}$ when the curtains if you use lead 98.4%, $Cranial30^{\circ}$ 98.3% have a protective effect of the radiation. left circumflex coronary artery test cases, Caudal $30^{\circ}$ if the shielding effect of 90.2%, Caudal $30^{\circ}LAO$ $30^{\circ}$ 88.7% have a protective effect of the radiation. left anterior descending artery test cases, Cranial $30^{\circ}$ 98.3%, Cranial $30^{\circ}RAO$ $30^{\circ}$ 80.3%, Cranial $30^{\circ}$LAO $30^{\circ}$ 98% of the radiation has a protective effect. OS(Spider view) in the case of test Caudal $40^{\circ}LAO$ $40^{\circ}$ 71.2% appeared to have the effect of radiation shielding. For these reasons, radiation workers need to be aware on taking care of their radiation exposure by using the radiation collimator shielding even though it is uncomfortable for them.

Study of the corrosion effect of CO2 stream with SO2 and NO2 on a phosphate coated steel tube (SO2 및 NO2 포함 고압 CO2 스트림이 인산염 코팅 CO2 수송관 부식에 미치는 영향)

  • Cho, Meang-Ik;Kang, Seong-Gil;Huh, Cheol;Baek, Jong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6973-6979
    • /
    • 2014
  • To mitigate global warming and climate change, many countries are investing massively on the development of CCS technology, which is assumed to be the key technology to reduce $CO_2$ emissions. CCS technology is comprised of the capture, transport, and storage processes. During the capture process, impurities other than $CO_2$ are inevitably flowed into the $CO_2$ stream. In the present study, corrosion characteristics of a phosphate coated tube for $CO_2$ transportation was investigated with a $CO_2$ stream composed of $CO_2$, $H_2O$, $SO_2$, and $NO_2$. The test specimen was a phosphate coated steel tube, which was filled with $CO_2$ stream with the impurities mentioned above. SEM-EDS analysis is conducted to investigate the corrosion behavior. The results showed that although the H2O concentration did not exceed the solubility limit, corrosion occurred in the specimen, which has an inflow of $SO_2$ or $NO_2$. This suggests that the $SO_2$, $NO_2$ and $H_2O$ concentration should be strictly controlled. These results suggest that the $SO_2$ and $NO_2$ concentration should be controlled below 175ppm and 65ppm, respectively.

Feasibility of MatriXX for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료의 품질관리를 위한 이온전리함 매트릭스의 유용성 고찰)

  • Kang, Min-Young;Kim, Yoen-Lae;Park, Byung-Moon;Bae, Yong-Ki;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • Purpose: To evaluate the feasibility of a commercial ion chamber array for intensity modulated radiation therapy (IMRT) quality assurance (QA) was performed IMRT patient-specific QA Materials and Methods: A use of IMRT patient-specific QA was examined for nasopharyngeal patient by using 6MV photon beams. The MatriXX (Wellhofer Dosimetrie, Germany) was used for IMRT QA. The case of nasopharyngeal cancer was performed inverse treatment planning. A hybrid dose distribution made on the CT data of MatriXX and solid phantom all of the same gantry angle (0$^\circ$). The measurement was acquired with geometrical condition that equal to hybrid treatment planning. The $\gamma$-index (dose difference 3%, DTA 3 mm) histogram was used for quantitative analysis of dose discrepancies. An absolute dose was compared at the high dose low gradient region. Results: The dose distribution was shown a good agreement by gamma evaluation. A proportion of acceptance criteria was 95.8%, 97.52%, 96.28%, 98.20%, 97.78%, 96.64% and 92.70% for gantry angles were 0$^\circ$, 55$^\circ$, 110$^\circ$, 140$^\circ$, 220$^\circ$, 250$^\circ$ and 305$^\circ$, respectively. The absolute dose in high dose low gradient region was shown reasonable agreement with the RTP calculation within $\pm$3%. Conclusion: The MatriXX offers the dosimetric characteristics required for performing both relative and absolute measurements. If MatriXX use in the clinic, it could be simplified and reduced the IMRT patient-specific QA workload. Therefore, the MatriXX is evaluated as a reliable and convenient dosimeter for IMRT patient-specific QA.

  • PDF

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF

Comparative study on the radiopacity of different resin-based implant cements (레진계 임플란트용 시멘트의 방사선 불투과성에 대한 비교연구)

  • Han, Kyeong-Hwan;Cheon, Ho-Young;Kim, Min-Su;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.97-104
    • /
    • 2014
  • This study was aimed to compare the radiopacity of four kinds of currently available resin based implant cements using digital radiography. Materials and Methods: Four resin-based implant cements((Estemp $Implant^{TM}$ (Spident, Incheon, Korea), $Premier^{(R)}$Implant (Premier, Pennsylvania, USA), $Cem-Implant^{TM}$ (B.J.M lab, Or-yehuda, Israel), $InterCem^{TM}$ (SCI-PHARM, California, USA)) and control group (Elite Cement $100^{TM}$ (GC, Tokyo, Japan) ) were mixed and cured according to the manufacturer's instructions on the custom made split-type metal mold. A total of 150 specimens of each cement were prepared and each specimen (purity over 99%) was placed side-by-side with an aluminum step wedge for image taking with Intraoral X-ray unit (Esx, Vatech, Korea) and digital X-ray sensor (EzSensor, Vatech, Korea). For the evaluation of aluminum wedge equivalent thickness (mm Al), ImageJ 1.47 m (Wayne Rasband, National Institutes of Health, USA) and Color inspector 3D ver 2.0 (Interaktive Visualisierung von Farbraumen, Berlin, Germany) programs were used. Result: Among the 5 cements, Elite cement $100^{TM}$ (control group) showed the highest radio-opacity in all thickness. In the experimental group, $InterCem^{TM}$ had the highest radio-opacity followed by $Premier^{(R)}$ Implant $Cement^{TM}$, $Cem-Implant^{TM}$ and Estemp $Implant^{TM}$. In addition, $InterCem^{TM}$ showed radio-opacity that met the ISO No. 4049 standard in all the tested specimen thickness. Cem-Implant on 0.5 mm thickness showed radiopacity that met the ISO No. 4049 standard. Conclusion: Among the implant resin-based cements tested in the study, $Premier^{(R)}$ Implant Cement and Estemp $Implant^{TM}$ did not show appropriate radio-opacity. Only $InterCem^{TM}$ and $Cem-Implant^{TM}$ 0.5 mm specimen had the proper radiopacity and met the experiment standard.

A Study on the Use of Active Protocol Using the Change of Pitch and Rotation Time in PET/CT (PET/CT에서 Pitch와 Rotation Time의 변화를 이용한 능동적인 프로토콜 사용에 대한 연구)

  • Jang, Eui Sun;Kwak, In Suk;Park, Sun Myung;Choi, Choon Ki;Lee, Hyuk;Kim, Soo Young;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.67-71
    • /
    • 2013
  • Purpose: The Change of CT exposure condition have a effect on image quality and patient exposure dose. In this study, we evaluated effect CT image quality and SUV when CT parameters (Pitch, Rotation time) were changed. Materials and Methods: Discovery Ste (GE, USA) was used as a PET/CT scanner. Using GE QA Phantom and AAPM CT Performance Phantom for evaluate Noise of CT image. Images are acquired by using 24 combinations that four stages pitch (0.562, 0.938, 1.375, 1.75:1) and six stages X-ray tube rotation time (0.5s-1.0s). PET images are acquired using 1994 NEMA PET Phantom ($^{18}F-FDG$ 5.3 kBq/mL, 2.5 min/frame). For noise test, noise are evaluated by standard deviation of each image's CT numbers. And then we used expectation noise according to change of DLP (Dose Length Product) to experimental noise ratio for index of effectiveness. For spatial resolution test, we confirmed that it is possible to identify to 1.0 mm size of the holes at the AAPM CT Performance Phantom. Finally we evaluated each 24 image's SUV. Results: Noise efficiency were 1.00, 1.03, 1.01, 0.96 and 1.00, 1.04, 1.02, 0.97 when pitch changes at the QA Phantom and AAPM Phantom. In case of X-ray tube rotation time changes, 0.99, 1.02, 1.00, 1.00, 0.99, 0.99 and 1.01, 1.01, 0.99, 1.01, 1.01, 1.01 at the QA Phantom and AAPM Phantom. We could identify 1.0 mm size of the holes all 24 images. Also, there were no significant change of SUV and all image's average SUV were 1.1. Conclusion: 1.75:1 pitch is the most effective value at the CT image evaluation according to pitch change and It doesn't affect to the spatial resolution and SUV. However, the change of rotation time doesn't affect anything. So, we recommend to use the effective pitch like 1.75:1 and adequate X-ray tube rotation time according to patient size.

  • PDF