• Title/Summary/Keyword: 촬영조건의 정확도

Search Result 134, Processing Time 0.02 seconds

화상분석을 통한 종이의 두께 방향 밀도 변이 평가 및 불투명도와의 상관관계 해석

  • 박선규;이학래
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.184-184
    • /
    • 2001
  • 캘린더령은 지펼의 표면을 평활하게 하고, 두께를 감소시켜 균일하게 하는 역할을 한다. 그러나 이는 필연적으로 불투명도와 같은 광학적 성질과 인장강도 등의 강도적 성질 의 저하를 유발한다. 따라서 캘린더링 공정변수인 온도, 압력, 속도 등이 종이의 물성에 미 치는 영향을 정확하게 파악하는 것은 캘린더령에 따라 발생할 수 있는 물성 저하를 최소화 하기 위해 필수적으로 요청된다. 본 연구에서는 최근들어 저평량화에 대한 관심이 증가하면 서 그 중요성이 더해지고 있는 불투명도가 캘린더링에 따라 변화되는 양상을 분석하기 위해 서 화상분석 기법을 이용하여 종이의 두께방향 밀도 변이를 평가하고 밀도변이와 불투명도 와의 상관관계를 해석코자 하였다. 또 캘린더링에 따른 불투명도를 저하를 최소화시키기 위 한 캘린더링 조건을 모색하였다. 캘린더링에 의해 발생하는 종이의 두께 변형은 두께방향의 위치에 따라 다르게 나 타난다. 이러한 종이의 두께 방향으로 발생하는 밀도 변이와 이에 따른 불투명도 변화를 평 가하기 위하여 동일한 평량의 종이를 캘린더령 조건을 달리하여 두께방향 밀도변이가 다른 시편을 준비하고 두께 방향 단면을 SEM으로 촬영하였다. 이후 화상분석기를 통해 단면을 이치화하고, 각 픽셀의 흑백 값을 구해 CD방향으로 평균을 내어 두께 방향에 대한 밀도 변 이를 평가하였다. 그 결과 압력보다는 온도를 높여 캘린더링한 경우 종이의 두께 방향 밀도 경사가 커진다는 사실을 확인할 수 있었다. 이는 고온에 의해 표층이 고밀화되고 상대적으 로 내부가 별크해졌기 때문이다. 이러한 밀도 변이가 종이의 광학적 성질인 불투명도에 미 치는 영향을 구명하기 위해서 캘린더링 전후에 두께 및 불투명도를 측정하여 5% 유의수준 에서 회귀분석을 실시하였다. 밀도경사를 지닌 종이의 불투명도를 이론적으로 해석하기 위해 다층 모델을 가정하 고 각 층의 비광산란계수(5)와 비광흡수계수(k)를 달리 부여하고 Kubelka-Munk 이론을 근 거로 하여 이론적 불투명도를 계산하였다. 불투명도에 대한 분석를 통해 동일한 두께 변형 을 가지는 샘플에 대해서 압력보다는 온도를 증가시켜 두께를 감소시키는 캘린더링 처리가 불투명도의 저하를 최소화한다는 것을 확인하였다.

  • PDF

A Method to Compare Images for Managing Tools to Repair Ships (선박 수리장비 관리를 위한 이미지 비교기법)

  • Park, Sung-Hoon;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2489-2496
    • /
    • 2014
  • The existing ship repair tool management system based on hand writing has many problems such as frequent loss of tool and overdue. To solve this problem, same systems have adopted the bar-code system. However, the systems can't cope with a problem to substitute spurious tool for genuine one on bar-code damage. Therefore, additional validation steps are necessary in order to manage expensive ship repair tool. In this paper, we propose an image comparison method for ship repair tool management. To be more concrete, we propose a normalization method and determination conditions for image comparison to use characteristics of mobile device. The normalization method makes use of the characteristics of mobile device that provides functions of real time recording, overlapping and cropping images. The proposed method applies three conditions(sum of inner angles, size of angle, position of corner coordinates) into the comparison module. The implemented system shows good performance on change direction, lighting, size and etc. The accuracy is more than 95%.

Measurement of the Skin Dose of Patient Using the Optically Stimulated Luminescent Dosimeter at Diagnostic Radiography (진단방사선촬영에서 광자극발광선량계를 이용한 환자 피부선량의 측정)

  • Kim, Jong-Eon;Im, In-Chul;Min, Byung-In
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.437-442
    • /
    • 2011
  • The purpose of this study is an measurement of the skin dose of a patient by using the OSLD(optically stimulated luminescent dosimeter) under several irradiation conditions of the X-ray beam for diagnostic radiography. The measurements of skin dose were performed for head, chest, and pelvis. And test of reproducibility was carried out at the chest. As a result, we obtained the skin dose at forehead of head to be 1.30 mSv. The skin doses at xiphoid process, breast and apex of the lung of the chest were acquired 0.92, 0.52 and 0.70 mSv, respectively. And we obtained the skin doses at the left pelvis and the right pelvis to be 2.78 and 3.08 mSv, respectively. As for reproducibility, a coefficient of variation was 0.033. The skin doses were exhibited the values corresponding from 1/100 to 1/17 of the dose limit of the public(50 mSv) at the deterministic effect. In order to make accurate measurements of the skin doses for each tube voltage, the measured values have to multiply by the displayed values of reader by a correction factor. The energy response of the OSLD with the tube voltage will be studied in the near future.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF

Analysis of 3D Accuracy According to Determination of Calibration Initial Value in Close-Range Digital Photogrammetry Using VLBI Antenna and Mobile Phone Camera (VLBI 안테나와 모바일폰 카메라를 활용한 근접수치사진측량의 캘리브레이션 초기값 결정에 따른 3차원 정확도 분석)

  • Kim, Hyuk Gi;Yun, Hong Sik;Cho, Jae Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • This study had been aimed to conduct the camera calibration on VLBI antenna in the Space Geodetic Observation Center of Sejong City with a low-cost digital camera, which embedded in a mobile phone to determine the three-dimension position coordinates of the VLBI antenna, based on stereo images. The initial values for the camera calibration have been obtained by utilizing the Direct Linear Transformation algorithm and the commercial digital photogrammetry system, PhotoModeler $Scanner^{(R)}$ ver. 6.0, respectively. The accuracy of camera calibration results was compared with that the camera calibration results, acquired by a bundle adjustment with nonlinear collinearity condition equation. Although two methods showed significant differences in the initial value, the final calibration demonstrated the consistent results whichever methods had been performed for obtaining the initial value. Furthermore, those three-dimensional coordinates of feature points of the VLBI antenna were respectively calculated using the camera calibration by the two methods to be compared with the reference coordinates obtained from a total station. In fact, both methods have resulted out a same standard deviation of $X=0.004{\pm}0.010m$, $Y=0.001{\pm}0.015m$, $Z=0.009{\pm}0.017m$, that of showing a high degree of accuracy in centimeters. From the result, we can conclude that a mobile phone camera opens up the way for a variety of image processing studies, such as 3D reconstruction from images captured.

Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery (2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.179-197
    • /
    • 2020
  • Topographic normalization reduces the terrain effects on reflectance by adjusting the brightness values of the image pixels to be equal if the pixels cover the same land-cover. Topographic effects are induced by the imaging conditions and tend to be large in high mountainousregions. Therefore, image analysis on mountainous terrain such as estimation of wildfire damage assessment requires appropriate topographic normalization techniques to yield accurate image processing results. However, most of the previous studies focused on the evaluation of topographic normalization on satellite images with moderate-low spatial resolution. Thus, the alleviation of topographic effects on multi-temporal high-resolution images was not dealt enough. In this study, the evaluation of terrain normalization was performed for each band to select the optimal technical combinations for rapid and accurate wildfire damage assessment using PlanetScope images. PlanetScope has considerable potential in the disaster management field as it satisfies the rapid image acquisition by providing the 3 m resolution daily image with global coverage. For comparison of topographic normalization techniques, seven widely used methods were employed on both pre-fire and post-fire images. The analysis on bi-temporal images suggests the optimal combination of techniques which can be applied on images with different land-cover composition. Then, the vegetation index was calculated from the images after the topographic normalization with the proposed method. The wildfire damage detection results were obtained by thresholding the index and showed improvementsin detection accuracy for both object-based and pixel-based image analysis. In addition, the burn severity map was constructed to verify the effects oftopographic correction on a continuous distribution of brightness values.

The Image Distortion Analysis of Levin-tube tip by Patient position and Incidence Angle when taking Mobile Chest AP Projection (Mobile Chest AP 검사 시 환자자세와 입사각도에 따른 Levin-tube tip의 영상왜곡 분석)

  • Lee, Jinsoo;Park, Hyonghu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.467-471
    • /
    • 2015
  • This study's purpose is improve image quality to keep accurate tube angle in order to recognize distortion degree conditions by patient's position or tube angle and to provide exact clinical informations when taking chest AP projection for patient which have L-tube in stomach. The experimental equipment was ELMO-T6S by SHIMADZU corporation, then we put L-tube which attached 1 mm gap scales ruler on chest phantom surface. The experiment set by 90 kVp, 4 mAs, 120 cm distance. Each phantom position which changed supine, 30degree, 45degree, 60degree on the table exposured direct, ${\pm}5degree$, ${\pm}10degree$, ${\pm}15degree$ to head and feet directions. As a result, L-tube tip's position was changed by patient's position and tube angle. When patient's position is supine, tip's position change was lower than 30degree, 45degree, 60degree. We have to adjust patient's position or tube angle in order to occur image distortion by fault tube angle when confirming correct position L-tube tip through chest x-ray. Also, Radiological technologist try to make accurate evaluation index for satisfied L-tube insertion.

Accuracy Analysis of Target Recognition according to EOC Conditions (Target Occlusion and Depression Angle) using MSTAR Data (MSTAR 자료를 이용한 EOC 조건(표적 폐색 및 촬영부각)에 따른 표적인식 정확도 분석)

  • Kim, Sang-Wan;Han, Ahrim;Cho, Keunhoo;Kim, Donghan;Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.457-470
    • /
    • 2019
  • Automatic Target Recognition (ATR) using Synthetic Aperture Radar (SAR) has been attracted attention in the fields of surveillance, reconnaissance, and national security due to its advantage of all-weather and day-and-night imaging capabilities. However, there have been some difficulties in automatically identifying targets in real situation due to various observational and environmental conditions. In this paper, ATR problems in Extended Operating Conditions (EOC) were investigated. In particular, we considered partial occlusions of the target (10% to 50%) and differences in the depression angle between training ($17^{\circ}$) and test data ($30^{\circ}$ and $45^{\circ}$). To simulate various occlusion conditions, SARBake algorithm was applied to Moving and Stationary Target Acquisition and Recognition (MSTAR) images. The ATR accuracies were evaluated by using the template matching and Adaboost algorithms. Experimental results on the depression angle showed that the target identification rate of the two algorithms decreased by more than 30% from the depression angle of $45^{\circ}$ to $30^{\circ}$. The accuracy of template matching was about 75.88% while Adaboost showed better results with an accuracy of about 86.80%. In the case of partial occlusion, the accuracy of template matching decreased significantly even in the slight occlusion (from 95.77% under no occlusion to 52.69% under 10% occlusion). The Adaboost algorithm showed better performance with an accuracy of 85.16% in no occlusion condition and 68.48% in 10% occlusion condition. Even in the 50% occlusion condition, the Adaboost provided an accuracy of 52.48%, which was much higher than the template matching (less than 30% under 50% occlusion).

A Study on Absorbed Dose in the Breast Tissue using Geant4 simulation for Mammography (유방촬영에서 Geant4 시뮬레이션를 이용한 유방조직내 흡수선량에 관한 연구)

  • Lee, Sang-Ho;Lee, Jong-Seok;Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %~0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %~0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4 Simulation is useful in measuring the absorbed dose in the breast tissue for mammography.

Restoration of an Edentulous Patient with CAD/CAM Guided Implant Surgery ($NobelGuide^{TM}$) and Immediate Loading: Case Report (무치악 환자에서 CAD/CAM을 이용한 임플란트 식립($NobelGuide^{TM}$) 및 즉시하중 증례)

  • Ko, Kyoung-Ho;Lim, Kwang-Gil;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.233-245
    • /
    • 2011
  • With the use of computed tomography (CT), computer-aided design/computer-assisted machining (CAD/CAM) technology and internet, the implant dentistry has been evolved. The surgical templates made by CAD/CAM technology and precise installation of implants, permit restorations to be inserted immediately after implants have been placed. The advantages of CAD/CAM guided implant procedures are flapless, minimally invasive surgery and shorter surgery time. With this technique, less postoperative morbidity and delivery of prosthesis for immediate function would be possible. A patient with an edentulous maxilla and mandible received 7 implants in mandible using CAD/CAM surgical templates. Prefabricated provisional fixed prostheses were connected immediately after implant installation. Provisional prostheses were evaluated for aesthetics and function during 6 months. Definitive prostheses were fabricated. At 6 months recall appointment, patient's occlusion was slightly changed. To prevent additional adverse effect, regular check-up and occlusal adjustment would be needed.