• Title/Summary/Keyword: 촉매 산화

Search Result 1,206, Processing Time 0.023 seconds

Decomposition of Methanol-Water on $M^{II}$/ Cu / ZnO system ($M^{II}$/ Cu / ZnO 계에서의 메탄올-물의 반응)

  • Young-Sook Lee;Chong-Soo Han;Min-Soo Cho;Kae-Soo Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.22-29
    • /
    • 1988
  • The reaction of methanol-water mixture to $CO_2$ and $H_2$ on alkaline earth metal-copper-zinc oxide has been studied in the temperature range of 150 ${\sim}\;300^{\circ}C$. Generally the addition of the alkaline earth metal to Cu/ZnO resulted in an enhancement of selectivity for $CO_2$ formation and a reduction of catalytic activity. Measurable activities were found from 150$^{\circ}C$, 200$^{\circ}C$, and 250$^{\circ}C$ on Mg/Cu/ZnO, Ca/Cu/ZnO, and Ba/Cu/ZnO respectively. However, the highest selectivity for $CO_2$ formation was observed in Ba/Cu/ZnO catalyst at 250$^{\circ}C$. The effect of alkaline earth metal or ZnO on the reactivity was investigated using temperature programmed desorption of $CO_2$ or temperature programmed reduction with $H_2$ over catalysts respectively. It was found that $CO_2$ interacts more strongly in the sequence of MgO < CaO < BaO and ZnO decereases the reduction temperature of CuO. From the results, it was suggested that ZnO activates $H_2$ in the redox process of Cu component and alkaline earth metals adsorbs $CO_2$ in the catalytic process.

  • PDF

A Study on the Simultaneous Oxidation of $CH_4$ and CO over $Pd/TiO_2$ Catalyst ($Pd/TiO_2$ 촉매를 이용한 $CH_4$, CO의 동시산화 연구)

  • Lee, Hyun Hee;Jang, Du Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.253-258
    • /
    • 2012
  • The effects of active sites and valence states were investigated over $Pd/TiO_2$ catalyst on simultaneous oxidation of $CH_4$ and CO. The Pd species (PdO) crystallite size increased with increasing Pd loadings, which results in enhancement of the activity of $CH_4$ oxidation. Different results from the activity of $CH_4$ and CO oxidation were shown to be dependent on the Pd valence state on the surface of the catalyst prepared through a thermal treatment. XRD and $H_2-TPR$ analysis confirmed that $Pd^{2+}$species was predominated in the calcination catalyst, while $Pd^0$species was predominated in the reduction catalyst. Additionally, it could be found that the valence state of Pd was a more important factor on the catalytic activity than that of factors as the surface area and pore volume. The reaction mechanism of $CH_4$ and CO followed by the valence state of Pd could be identified using FT-IR analysis.

Catalytic Oxidation of Toluene over Mn-Ce/${\gamma}-Al_2O_3$ Catalyst Doped with Ce (Ce가 첨가된 Mn-Ce/${\gamma}-Al_2O_3$ 촉매상에서 톨루엔의 촉매 산화 반응)

  • Cheon, Tae-Jin;Kim, Hye-Jin;Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.513-518
    • /
    • 2005
  • Catalytic oxidation of toluene on the manganese oxide catalysts and manganese-cerium oxide catalysts was investigated. The catalysts were characterised by X-ray diffraction(XRD), thermo gravimetric analyzer(TGA), toluene-temperature program reduction(Toluene-TPR). We found that the optimal manganese content was 18.2 wt.% and the optimal cerium content was 10.0 wt.% at catalytic oxidation of toluene. It is shown that ceria improves the activity of manganese oxide phases. From the XRD results, it was estimated that $MnO_2$ phase was active site in the monometallic and bimetallic catalysts. From the TGA and Toluene-TPR results, it show that ceria improves the mobility of the lattice oxygen, adequate oxidation state of the active phase, reduction ability at low temperature, and re-oxidation of the active site.

Catalytic combustion of methane over bi and tri noble metallic alumina catalysts (이원 및 삼원 귀금속 알루미나 촉매를 이용한 메탄의 촉매 산화)

  • Jang, Hyun-Tae;Lee, Ji-Yun;Bhagiyalakshmi, Margandan;Cha, Wang-Seong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.894-897
    • /
    • 2009
  • $\gamma-Al_2O_3$, $TiO_2$, ZrO에 Pt, Pd, Rh, Ru의 귀금속촉매를 분산하였으며, 촉매 분산은 과잉용액함침법으로 제조하였다. 저온에서 높은 산화능을 지닌 최소화된 귀금속의 함침량을 도출하기 위하여 연구를 수행하였다. 귀금속 촉매의 조성에 대한 영향을 도출하기 위하여 Rh, Pt, Pd, Ru에 대하여 조성과 함침량에 대하여 연구를 수행하였다. 충전층 반응기 및 모노리스 반응기를 이용한 촉매산화반응 실험결과 50% 전환온도 및 90% 전환온도를 측정한 결과 최적의 조성은 Pt-Rh /$Al_2O_3$ 촉매로 판명되었다.

  • PDF

Development of catalysts for natural gas fueled vehicle (천연가스 자동차용 촉매의 개발)

  • 최병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-6
    • /
    • 1995
  • 천연가스 자동차의 배출가스 정화특성은 가솔린보다 우수하며 대기오염물질이 전반적으로 매우 낮아 천연가스 자동차의 저공해성을 확인할 수 있다. 이를 위한 촉매개발 기술에서는 Pb촉매가 메탄의 산화에 유리하며, 촉매구조는 Single-bed 보다 Dual-bed type이 메탄의 정화율에 유리하다는 것을 알았다. 각종 배기성분의 공존영향에서는 공존하는 NOx, H$_{2}$O가 메탄의 산화반응을 억제하는 요인으로 작용함을 알았다. 그리고, 천연가스 전용촉매는 초기 내구성이 급격히 저하하는 특성이 있는데, 이는 Lanthanoid 조촉매를 사용하므로써 개선의 가능성을 보이고 있다.

  • PDF

Characteristics of VOCs Combustion over Mn Oxides Catalyst (망간 산화물 촉매의 VOCs 연소 특성)

  • 서성규;윤형선;김상채
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.421-422
    • /
    • 2000
  • VOCs 처리기술로는 촉매연소, 열적처리, 생물학적처리법 등이 있으며, 촉매연소방법의 경우 저온에서 처리가 가능하여 처리비용 절감 등의 효과를 고려할 때 가장 경제적인 방법으로 평가되고 있다(Guisnet, et al., 1999). VOCs 처리에는 대부분 고가의 귀금속촉매를 많이 사용하므로, 경제적 부담을 줄이기 위하여 귀금속을 담체(SiO$_2$, A1$_2$O$_3$, TiO$_2$등)에 담지시켜 활용하거나, 귀금속촉매를 대체하기 위한 Mn, Co, Cu 등의 금속 산화물 촉매에 대한 연구가 활발히 진행되고 있다. (중략)

  • PDF

Oxidation characterization of VOCs(volatile organic compounds) over pt and ir supported catalysts (Pt와 Ir을 담지한 촉매에 의한 휘발성유기화합물들의 산화특성)

  • Kim, Moon-Chan;Yoo, Myong-Suk
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.130-138
    • /
    • 2005
  • Volatile organic compounds (VOCs) have been recognized as major contributor to air pollution. Catalytic oxidation in VOCs can give high efficiency at low temperature. In this study, monometallic Pt, Ir and bimetallic Pt-Ir were supported to $TiO_2$. Xylene, toluene and methyl ethyl ketone (MEK) were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and characterized by XRD, XPS and TEM analysis. Result reveal that Pt catalyst has higher conversion than Ir catalyst and Pt-Ir bimetallic catalysts. The existence of multipoint actives in, Pt-Ir bimetallic catalysts gives improved performance for the Pt metalstate. Bimetallic catalysts have higher conversion for VOCs than monometallic ones. The addition, VOCs oxidation follows first order kinetics. The addition of small amount of Ir to Pt promotes oxidation conversion of VOCs.

A Study of Nitric Oxide Oxidation Catalyst Using Non-noble Metals (비귀금속계 금속을 이용한 일산화질소 산화 촉매 연구)

  • Shin, JungHun;Hong, SungChang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.385-392
    • /
    • 2021
  • In this study, impact of Co proportion and calcination temperature of ceria on the Co/CeO2 was analyzed by comparing nitrogen monoxide oxidation performance of various catalysts and their physico-chemical properties. The structural properties of each catalyst were studied by XRD and BET analysis, and the surface crystal states of cobalt were proposed according to the surface density. Oxidation states of elements were observed through Raman and XPS analysis, and the relationship between typical oxidation states and nitrogen monoxide oxidation performance was designed. Through H2-TPR, oxygen-transferring capacity due to changes in the characteristics of catalysts were identified, and activation sites (Co3+) for oxidation were suggested.

Oxidative Decomposition of 2, 4, 6-Trichlorophenol Catalyzed by Polymer Supported Metalloporphyins (고분자결합 금속포르피린을 촉매로 한 2, 4, 6-트리클로로페놀의 산화 분해반응)

  • Park, Hye-Ok;Lee, Bo-Young;Rhee Paeng, Insook
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.72-79
    • /
    • 2001
  • Oxidative decomposition of 2, 4, 6-trichlorophenol(TCP) was studied in aqueous solution. Iron and manganese protoporphyrin [or tetrakis(p-carboxyphenylporphyrin)] and their polymer supported derivatives were used as catalysts, and $KHSO_5$ and tert-butyldroperoxide(TBHP) as oxidants. Metalloporphyrin itself shows very poor catalytic activity in oxidative decomposition of TCP with oxidant. However, very high catalytic activity was observed when metalloporphyrin was chemically bound to newly synthesized polymers or XAD2 resin. Additionally, it revealed much higher catalytic activity in the presence of water-soluble polymers having a electron-donating axial ligand such as pyridine and immidazole. Maleic acid and chloromaleic acid were found in the resulting solution by ESI-MS. Especially, XAD2-supported metalloporphyrins can be reused as catalysts due to insolubility to solvent, and stability against oxidant.

  • PDF

Catalytic Oxidation of Vinyl Chloride on Chromium Oxide Catalysts (크롬 산화물 촉매를 이용한 Vinyl Chloride의 산화 분해반응)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 1999
  • The catalytic oxidation of vinyl chloride was investigated over $CrO_x$ impregnated on $Al_2O_3$ at temperature between 200 and $400^{\circ}C$. The major carbonaceous products were CO and $CO_2$, and the selectivity of $CO_2$ was gradually increased with increasing reaction temperature, while that of CO was dropped consequently. This suggests that CO is the first product which is further oxidized to $CO_2$ in the oxidation of vinyl chloride over $CrO_x/Al_2O_3$. The addition of HCl in the feed didn't affect the conversion of vinyl chloride, but the selectivity of $CO_2$ decreased by adding HCl. It implies that HCl inhibits, the complete oxidation of vinyl chloride to $CO_2$. When oxidizing vinyl chloride in dry air, significant amounts of $Cl_2$ were observed, while no $Cl_2$ was detected in the humid condition. The activities of several catalysts including various precious metals and other transition metal oxides were measured, it was found that the catalytic activity of 12% $CrO_x/Al_2O_3$ was higher than other catalysts except 1% $Pt/Al_2O_3$. The reaction rate of 12% $CrO_x/Al_2O_3$ was 1.2 times lower than that of 1% Pt/alumina, but it was 3 to 8 times more active than other catalysts for vinyl chloride oxidation at $275^{\circ}C$.

  • PDF