• Title/Summary/Keyword: 초전도 변압기

Search Result 141, Processing Time 0.027 seconds

Design of an HTS Transformer with OLTC (OLTC를 고려한 고온 초전도 변압기의 설계)

  • Choi, J.H.;Lee, S.W.;Park, M.J.;Joo, H.G.;Han, J.H.;Hahn, S.Y.;Choi, K.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.67-71
    • /
    • 2007
  • HTS transformers which have been developed until now had only fundamental structures. Among the auxiliary functions of conventional transformers, voltage regulating is the most important one. For the voltage regulation, conventional transformers are equipped with on load tap changers (OLTCS). In this paper, we describe the possibility of the HTS transformer with OLTC. For the case study, we designed a single phase 33 MVA HTS transformer with OLTC. It is one of three individual HTS transformers which composes a 3 phase, 100 MVA transformer. It is expected to substitute for a 3 phase, 60 MVA conventional transformer in Korea. The parameters of an HTS transformer are varied due to the gap length between primary and secondary windings. The length was decided for the transformer to have the impedance of 12 %. Its size was limited to the one of the conventional transformer. The characteristics of the HTS transformer were analyzed in both case of having OLTC and not.

CHARACTERISTICS OF A SUPERCONDUCTING AIR-CORE TRANSFORMER OF TOROIDAL SHAP (토로이드형 공심 초전도 변압기의 특성)

  • Choi, Kyeong-Dal;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.27-30
    • /
    • 1991
  • With the recent development of high performance AC superconducting wire of very small ac loss and large current carrying capacity, the possibility of superconducting air core transformer is being studied. The air core transformer has merits of no iron loss, no insulation to the core and no harmonics. But the air core transformer has large exciting current and low magnetic coupling factor. To increase the coupling factor, the transformer of toroidal shape is proposed and designed. (10KVA, 110/220V) Compared with air core transformer of solenoidal shape, the performance is improved. The exciting current occupies about 22% of the rated current.

  • PDF

Equal Current Distribution in Superconducting Parallel Circuits Using Multi-Interphase Transformers (선로간 변압기를 이용한 초전도 병렬회로의 평형 전류분배)

  • Hyun, Ok-Bae;Choi, Yong-Sun;Sim, Jung-Wook;Kim, Hye-Rim;Hwang, Si-Dole
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.140-142
    • /
    • 2003
  • Small impedances in the superconducting Parallel circuits cause unequal distribution of the currents in the circuits. This results in Quenches or losses in some superconducting parts. This paper presents the fabrication and test results of a multi-interphase transformers (IPT) for equal current distribution in parallel circuits. Test results show that the IPT can effectively make the current distribution uniform in parallel circuits that have unequal resistances.

  • PDF

Modeling of Superconducting Transformer using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 초전도 변압기 모델링)

  • Lim, Chae-Hyung;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.37-39
    • /
    • 2003
  • This paper Presents an effective modeling scheme of high temperature superconducting transformer. So far there were numerical modeling and designs for conventional transformers for various applications. Recently, the interest and the R&D in superconducting technology and devices such as superconducting generator, motor, cable, fault current limiter and transformer have been increased gradually. With those interests, this paper proposes a simulation model of high temperature superconducting transformer using PSCAD/EMTDC, which can be applied to the utility network simulation readily under various system conditions.

  • PDF

Analysis of AC Losses in HIS Transformer with Double Pancake Windings (초전도 변압기 교류 손실 해석)

  • Kim Jong-Tae;Kim Woo-Seok;Kim Sung-Hoon;Choi Kyeong-Dal;Joo Hyeong-Gil;Hong Gye-Won;Han Jin-Ho;Lee Hee-Gyoun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • AC loss is one of the important parameters in HTS (High Temperature Superconducting) AC devices. Among the HTS AC power devices, the transformer is the essential part in the electrical power system. But unfortunately, the transformer is the worst HTS device concerning AC loss because of very large magnetization loss due to high magnetic field applied to the HTS wire. We calculated the magnetization losses in HTS pancake windings for transformer according to the operating temperature. Two kinds of arrangement of HTS pancake windings were adopted for calculation of AC losses of a shell type transformer, and the analysis results were presented and discussed.

Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding (3차 권선을 고려한 단상 33MVA 고온초전도 변압기의 개념설계)

  • Lee, S.W.;Kim, W.S.;Hahn, S.Y.;Hwang, Y.I.;Choi, K.D.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.162-166
    • /
    • 2006
  • We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  • PDF

Iron Core Effects on Maximum Temperature Rise of Superconducting Transformer during Quench (퀜치시 초전도 변압기의 최대온도에 철심이 미치는 영향)

  • Nah, Wan-Soo;Joo, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.7-12
    • /
    • 1999
  • In this paper, the analytical results on the maximum temperature rise estimation, taking account of the magnetizing current, are presented. Magnetizing current effects are considered for the maximum temperature rise estimation during quenches. By introducing the first order model of the infinite solenoids, we calculate the magnetizing and leakage inductances of the coaxial-wound-superconducting transformers. As the permeability of the transformer core increases, so does the magnetizing inductance, while the leakage inductances and the magnetizing current of the transformer go down. These varying permeability effects on maximum temperature rise estimation is applied to the superconducting transformers, of which specifications have already been published. The calculated results showed sufficient margins to the thermal damage.

  • PDF

One Dimensional Leakage Inductance Calculation of Superconducting Transformer (1 차원모델을 이용한 초전도 변압기의 누설인덕턴스 계산)

  • Kim, Tae-Ki;Nah, Wan-Soo;Cha, Guee-Soo;Hahn, Song-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.256-259
    • /
    • 1997
  • This paper describes on the leakage inductance calculations of superconducting (s/c) tranformer. When s/c transformer quenches, the magnetic energy stored in the leakage inductance dissipates in the form of Joule heating. So, it is highly desired to estimate the leakage inductances of a s/c transformer as it is designed. In this paper, we calculated the leakage inductance of sic transformer, using zeroth and first order model, and the calculated results were compared with the measured ones. It shows that 1st order model is enough to estimate the leakage inductacne of s/c transformer.

  • PDF

Simulation of Three Phase Supercoducting Transformer using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 3상 초전도 변압기 시뮬레이션)

  • Lim, Chae-Hyung;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.958-960
    • /
    • 2003
  • Although the researches and developments are performed for superconducting technologies, many problems such as AC loss and quench phenomenon still remain to design the superconducting transformer. In addition, pre-study on the three phase high temperature superconducting (HTS) transformer is a sort of time and expense consuming work, thus it is very worthy of being analyzing the characteristics of HTS transformer in advance through proper simulation programs and skills. This paper presents an effective simulation method for the three phase HTS transformer using components developed in the PSCAD/EMTDC.

  • PDF

A Study on AC Loss in the Two-parallel Solenoid Coil using Multi-stacked conductors (적층형 도체를 이용한 2병렬 솔레노이드 코일의 교류손실 연구)

  • Hwang, Young-Jin;Choi, Suk-Jin;Chang, Ki-Sung;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.820_821
    • /
    • 2009
  • 전력기기는 일반적으로 상용주파수인 60 Hz의 교류 전원하에서 운용된다. 따라서 고온초전도체를 전력기기에 응용하는데 있어 교류전류나 교류자장에 의한 교류손실 발생 문제는 전력기기의 경제적 운용과 관련하여 중요하게 부각되어 왔다. 또한 고온초전도체에서 발생하는 교류손실은 에너지의 열적 변환으로 인한 냉동부하 문제와도 관련되어 있기 때문에 전력기기의 안정적인 운용을 위해서도 반드시 연구되어야 할 부분이다. 특히 변압기와 같이 유도형 권선이 필요한 전력기기의 경우에는 무유도 권선 형태가 적용되는 다른 전력기기에 비해 교류 손실의 크기가 매우 크기 때문에 이를 줄이기 위한 방안에 대한 연구가 다각도로 이루어지고 있다. 본 연구에서는 임계전류와 인덕턴스의 크기는 동일하지만 권선 형태를 다르게 할 수 있는 유도형 솔레노이드 코일을 제작하였다. 그리고 제작된 솔레노이드 코일의 병렬연결 구조를 달리하여 각각의 구조에 대한 교류손실의 차이를 측정하고 분석하였다. 그리하여 측정된 결과를 토대로 고온초전도 선재를 이용한 솔레노이드 코일에서 교류손실을 줄이기 위한 구조적 방안을 제시하고자 한다.

  • PDF