• Title/Summary/Keyword: 초장조절

Search Result 414, Processing Time 0.028 seconds

Analysis of Growth and Functional substance for Cyperus rotundus and Glehnia littoralis by EC Treatment in Reclaimed Soil Conditions (간척지 토양에서 EC 처리에 따른 향부자와 갯방풍의 생육 및 기능성 물질 함량 분석)

  • Jang, Ji-Hyeon;Shin, Hye-In;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.411-419
    • /
    • 2019
  • The purpose of this study was to analyze the growth and functional differences between C. rotundus and G. littoralis according to different electrical conductivity (EC) conditions in reclaimed soil conditions. C. rotundus and G. littoralis seeds were sown in a tray and managed for seedlings stage for eight weeks. They were transplanted in the pots containing reclaimed soils sampled in the Saemangum region. The plants were grown in the reclaimed land soil for 12 weeks under the control, 1, 2, 4, and $8dS{\cdot}m^{-1}$ conditions and in horticultural soils with EC $1.0dS{\cdot}m^{-1}$. Plant height, leaf length and width of C. rotundus were the highest in EC $1dS{\cdot}m^{-1}$. Leaf, flower and tuber numbers of C. rotundus were the highest in EC $2dS{\cdot}m^{-1}$ and the lowest in EC $8dS{\cdot}m^{-1}$, and SPAD was the highest in EC 2 and $4dS{\cdot}m^{-1}$ and the lowest in EC $8dS{\cdot}m^{-1}$. The fresh weights of shoot and root of C. rotundus grown under EC $2dS{\cdot}m^{-1}$ increased and then decreased as the concentration increased. When compared plant growth between reclaimed soil and horticulture soil with EC $1dS{\cdot}m^{-1}$, the fresh weights of shoot and root, SPAD, leaf number, flower number, and tuber number were higher in horticultural soils. Although G. littoralis grown under EC $8dS{\cdot}m^{-1}$ was the lowest in all growth parameters, there were no significant differences among other EC treatments. C. rotundus had the highest p-coumaric acid content in EC $1dS{\cdot}m^{-1}$. And the catechin content in shoot of G. littoralis was the highest in the control, and root of Glehnia littoralis had the highest benzoic acid contents in EC $1dS{\cdot}m^{-1}$. If the soil EC is well managed within $4.0dS{\cdot}m^{-1}$, two plants would be cultivated in reclaimed land.

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

Effects of Heating Initiative Temperature and CO2 Fertilizing Concentration on the Growth and Yield of Summer Squash in a Greenhouse (온실 난방 개시온도와 CO2 시비 농도가 애호박의 생육과 수량에 미치는 영향)

  • Goo, Hei Woong;Kim, Eun Ji;Na, Hae Yeong;Park, Kyoung Sub
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.468-475
    • /
    • 2022
  • This study was conducted to find out the efficiency of heating initiative temperature and carbon dioxide fertilization in summer squash (Cucurbita moschata D.). The heating start temperature experiment was performed at 9℃, 12℃, and 15℃ using an electric heater and operated when the temperature was lower than the target temperature. The CO2 fertilization concentration experiment was performed from 7 to 12 with the control, 500 µmol·mol-1, and 800 µmol·mol-1 using liquefied carbon dioxide. Investigation items were plant height, stem diameter, number of leaves, leaf area, fresh weight, dry weight, also economic analysis was conducted by surveying only fruits exceeding 100 g. Photosynthesis was measured for the upper leaf position to calculate the saturation point according to the control. The photo saturation point was 587 µmol·m-2·s-1, and the CO2 saturation point was 702 µmol·mol-1. Amax values by carbon dioxide were 13.4, 17.8, 17.2, 19.6, and 17.5 µmolCO2·m-2·s-1 in the order of 9℃, 12℃, 15℃, 500 µmol·mol-1, and 800 µmol·mol-1. In the temperature experiment, 9℃ in growth did not grow normally and no fruiting was performed. 12℃ and 15℃ were higher than 9℃, but there was no significant difference in growth and production. The CO2 fertilization experiment showed no significant difference between the treatment in growth, but the productivity of 800 µmol·mol-1 was the best. Comprehensively, the heating initiative temperature of 15℃ was good for crop growth and production, but there is no significant difference from 12℃, so it is good to set the heating start temperature to 12℃ economically, and maintaining of 800 µmol·mol-1 is effective in increasing production.

Selection of Supplemental Light Source for Greenhouse Cultivation of Pepper during Low Radiation Period through Growth and Economic Analysis (생육 및 경제성 분석을 통한 약광기 고추의 온실재배를 위한 적정 보광 광원 선정)

  • Hwang, Hee Sung;Lee, Kwang Hui;Jeong, Hyeon Woo;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.204-211
    • /
    • 2022
  • To produce a high quality crop, light is an essential environmental factor in greenhouse cultivation. In the winter season, solar radiation is weak than other season. Therefore, using supplemental light during a low radiation period can increase the crop growth and yield. This study was conducted to select the economical supplemental light source for greenhouse cultivation in pepper during the low radiation period. The green pepper (Capsicum annuum 'Super Cheongyang') was transplanted on 5 September 2019. Supplemental lighting treatment was conducted from 1 January 2020 to 31 March 2020. RB LED (red and blue LED, red:blue = 7:3), W LED (white LED, R:G:B = 5:3:2), and HPS (high-pressure sodium lamp) were used as the supplemental light source. Non-treatment was used as the control. The plant height, SPAD, and number of nodes of pepper plants have no significant differences by supplemental light sources. However, the number of ramifications plants was the greatest in RB LED light source. Moreover, supplemental lighting increased photosynthesis of the pepper plant, and especially, the RB LED had the highest photosynthesis rate during supplemental lighting period. Also, the yield of pepper increased in the supplemental lighting treatment than in the control, and the RB LED had the greatest yield than other light sources. The electricity consumption was the highest in W LED and the lowest in HPS light. Through the economic analysis, the RB LED had high economic efficiency. In conclusion, these results suggest that using RB LED for supplemental light source during low radiation in pepper greenhouse increase the yield and economic feasibility.

Growth Characteristics of Strawberry Runner Plants according to Mixing Ratio of Reused Rockwool, Decomposed Granite, and Horticultural Media (재사용 암면, 마사토 및 원예용 상토의 혼합비율에 따른 딸기 자묘의 생육 특성)

  • Jeong, Ji-Hee;Bae, Hyo Jun;Ko, Baul;Ku, Yang Gyu;Kim, Ho Cheol;Bae, Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • This study was conducted to investigate the horticultural media + decomposed granite + reused rock wool in the following mixing ratio: Control = 100:0, M1 = 80:0:20, M2 = 60:30:10, M3 = 40:30:30, M4 = 30:40:30, M5 = 0:50:50 (reused rockwool : decomposed granite : horticultural media) and develop the physicochemical properties and the growth of 'Sulhyang' strawberry runner plant. In the physical aspect of the horticultural media, statistical differences were recognized that the bulk density and particle density were lower in the control and M1. But the bulk density and particle density were high in the M3, M4, and M5, because it had high mixing ratio between recycled rock wool and decomposed granite. EAW and WBC showed a similar tendency. The air porosity and total porosity were higher in control and M1 than M3, M4, M5. Exchangeable cation (K+, Ca2+, Na+, Mg2+) and base replacement capacity (CEC) were higher in control and M1, than M2, M3, M4, and M5. As a result of the cultivation of 'Sulhyang' runner plant, the plant length was long in M2, 32.1 cm and smaller than M5 to 28.4 cm. However, if the crown diameter, which is the growth indicator of the runner plant, all 6 treatments were formed 11.23 mm-12.03 mm, which is considered to be suitable for the growth of the runner plant. There wasn't a statistical difference between the weight and dry weight of the root. As a result, the growth difference of the seedlings by the horticulture media was similar. Therefore, considering the physical properties of the horticultural media, it was judged that the air porosity and total porosity would be improved when the recycled rock wool and the decomposed granite were properly mixed rather than the use of the horticultural media as a single medium, which would be advantageous for irrigation management.

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse (고압나트륨등 보광 온실의 열적 거동 및 엽온 분석)

  • Seungri Yoon;Jin Hyun Kim;Minju Shin;Dongpil Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season (하절기 오이 온실재배 시 차광 및 보광 효과)

  • Jin Yu;Ji Hye Yun;So Yeong Hwang;Eun Won Park;Jeong Hun Hwang;Hyeong Eun Choi;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • High solar radiation in summer season causes excessive respiration of crops and reduces photosynthesis. In addition, the rainy season, which mainly occurs in summer, causes a low light condition inside the greenhouse. A low light condition can reduce crop growth and yield. This study was conducted to evaluate the effect of shade and supplemental lighting on the growth and yield of cucumber during summer season. Cucumber grafted seedlings were transplanted in two plastic greenhouses on August 30, 2022. To reduce the light intensity inside the greenhouse, a 50% shading screen was installed in one greenhouse. Supplemental lighting was conducted from September 7, 2022 to October 20, 2022. HPS (high-pressure sodium lamp), W LED (white LED, red:green:blue = 5:3:2), and RB LED (combined red and blue LED, red:blue = 7:3) were used for supplemental lighting sources, and non-treated (nonsupplemental lighting) was as the control. The supplemental lighting was conducted before sunrise and after sunset for 2 hours with a photosynthetic photon flux density of 150 ± 20 µmol·m-2·s-1. The plant height, leaf length, leaf width, and SPAD value tended to increase in the shading group. RB LED increased stem diameter regardless of shading treatment. Fresh and dry weights of fruits were not significantly different in shading and supplemental lighting. Average fresh weight of fruits was not significantly different among supplemental lighting as the harvest date passed. In conclusion, in this study 50% shade treatment significantly improved the growth of cucumber during the summer season. In addition, the growth and fruit characteristics are better than the control without supplemental lighting. This study can be used as basic research data for applying supplemental lighting technology to cucumber cultivation.

Evaluation of Cultivation Characteristics according to NO3- Ratio of Nutrient Solution for Korean Melon in Hydroponic Culture (양액의 NO3- 비율이 수경재배 참외의 생육과 수량에 미치는 영향)

  • Do Yeon Won;Ji Hye Choi;Chang Hyeon Baek;Na Yun Park;Min Gu Kang;Young Jin Seo
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.249-255
    • /
    • 2023
  • Korean melon (Cucumis melo L.) is grown mostly in Northeast Asia area, and as a fruit mainly produced in Korea, the yield per unit area continues to improve, but the cultivation method is limited to soil cultivation, so it is necessary to develop hydroponic cultivation technology for scale and labor-saving is needed. As the ratio of NO3- increased, the plant height, the leaf length, the leaf width, and the internode length became longer and larger. On the other hand, the SPAD value decreased. The lower the ratio of NO3-, the faster the female flower bloom, and there was no difference in fruit maturity between treatments. There was no difference in the shape of fruit according to the ratio of NO3-, and the hardness was higher as the ratio of NO3- was lower. The total yield from March to July was KM3 5,650 kg/10a and KM1 4,439 kg/10a, 27% higher in KM3 and, in particular, 36% higher in quantity from March to May, when Korean melon prices were high season. Therefore, it was judged that it would be appropriate to supply NO3- suitable for hydroponic cultivation of Korean melon, which was formalized in December and produced from spring, at the level of 6.5 to 10 me·L-1.

Growth and Seedling Quality of Grafted Cucumber Seedlings by Different Cultivars and Supplemental Light Sources of Low Radiation Period and Early Yield of Cucumber after Transplanting (보광 광원 종류에 따른 약광기 품종별 오이 접목묘의 생육과 묘소질 및 정식 후 초기 과실 수량)

  • Hyeong Eun Choi;So Yeong Hwang;Ji Hye Yun;Jin Yu;Jeong Hun Hwang;Eun Won Park;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.319-327
    • /
    • 2023
  • To harvest marketable cucumbers, high quality seedlings must be used. Producing seedlings in the greenhouse during the low radiation period decreases marketability due to insufficient light for growth. Supplemental lighting with artificial light of different quality can be used to improve low light conditions and produce high quality seedlings. Therefore, this study was conducted to select the appropriate supplemental light sources on the growth and seedling quality of grafted cucumber seedlings during the low radiation period. Three cultivars of cucumber were used as scions for grafting; 'NakWonSeongcheongjang', 'Sinsedae', and 'Goodmorning baekdadagi'. Figleaf gourd (Cucurbita ficifolia) 'Heukjong' was used as the rootstock. The seeds were sown on January 26, 2023, and grafted on February 9, 2023. After graft-taking, cucumbers in plug trays were treated with RB light-emitting diodes (LED, red and blue LED, red:blue = 8:2), W LED (white LED, R:G:B = 5:3:2), and HPS (high-pressure sodium lamp), respectively. Non-treatment was used as the control. Supplemental lighting was applied 2 hours before sunrise and 2 hours after sunset for 19 days. The stem diameter and fresh and dry weights of roots did not differ significantly by supplemental light sources. The plant height and hypocotyl length were decreased in W LED. However, the leaf length, leaf width, leaf area, and fresh and dry weights of shoots were the highest in the RB LED. Seedling qualities such as crop growth rate, net assimilation rate, and compactness were also increased in RB LED and W LED. After transplanting, most of the growth was not significant, but early yield of cucumber was higher in LED than non-treatment. In conclusion, using RB LED, W LED for supplemental light source during low radiation period in grafted cucumber seedlings improved growth, seedling quality, and early yield of cucumber.

Development of Kimchi Cabbage Growth Prediction Models Based on Image and Temperature Data (영상 및 기온 데이터 기반 배추 생육예측 모형 개발)

  • Min-Seo Kang;Jae-Sang Shim;Hye-Jin Lee;Hee-Ju Lee;Yoon-Ah Jang;Woo-Moon Lee;Sang-Gyu Lee;Seung-Hwan Wi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.366-376
    • /
    • 2023
  • This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the 'Cheongmyeong Gaual' variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37' N 128°32' E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.