DOI QR코드

DOI QR Code

Development of Kimchi Cabbage Growth Prediction Models Based on Image and Temperature Data

영상 및 기온 데이터 기반 배추 생육예측 모형 개발

  • Min-Seo Kang (Division of Vegetable, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jae-Sang Shim (Division of Vegetable, National Institute of Horticultural and Herbal Science, RDA) ;
  • Hye-Jin Lee (Division of Vegetable, National Institute of Horticultural and Herbal Science, RDA) ;
  • Hee-Ju Lee (Division of Vegetable, National Institute of Horticultural and Herbal Science, RDA) ;
  • Yoon-Ah Jang (Division of Vegetable, National Institute of Horticultural and Herbal Science, RDA) ;
  • Woo-Moon Lee (Division of Vegetable, National Institute of Horticultural and Herbal Science, RDA) ;
  • Sang-Gyu Lee (Division of Vegetable, National Institute of Horticultural and Herbal Science, RDA) ;
  • Seung-Hwan Wi (Division of Vegetable, National Institute of Horticultural and Herbal Science, RDA)
  • 강민서 (국립원예특작과학원 채소과) ;
  • 심재상 (국립원예특작과학원 채소과) ;
  • 이혜진 (국립원예특작과학원 채소과) ;
  • 이희주 (국립원예특작과학원 채소과) ;
  • 장윤아 (국립원예특작과학원 채소과) ;
  • 이우문 (국립원예특작과학원 채소과) ;
  • 이상규 (국립원예특작과학원 채소과) ;
  • 위승환 (국립원예특작과학원 채소과)
  • Received : 2023.10.10
  • Accepted : 2023.10.24
  • Published : 2023.10.31

Abstract

This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the 'Cheongmyeong Gaual' variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37' N 128°32' E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.

본 연구는 영상데이터와 환경데이터를 활용하여 배추의 생육을 예측할 수 있는 모형을 개발하기 위하여 수행되었다. 강원도 평창군에 소재한 시험포에 '청명가을' 배추를 7월 11일, 7월 19일, 7월 27일 3차례 정식하여 9월 12일까지 생육, 영상, 환경데이터를 수집하였다. 배추 생육예측 모형에 활용할 핵심인자를 선발하기 위하여 수집한 생육데이터와 기상데이터를 활용해 요소간 상관분석을 수행한 결과 생체중과 GDD, 생체중과 누적일사량의 상관계수가 0.88로 높은 상관계수를 보였으며, 생체중과 초장, 생체중과 피복면적이 각각0.78, 0.79로 유의미한 상관 관계를 보였다. 높은 상관관계를 보인 요소들 중에서 선행문헌을 참고하여 모형개발에 활용할 핵심요소로 영상에서는 피복면적을 환경데이터에서는 생육도일(GDD)을 선정하였다. GDD, 피복면적, 생육데이터를 조합하여 배추의 생체중, 엽수, 엽면적 예측 모형을 개발하였다. 단 요인 모형으로 2차함수, 시그모이드, 로지스틱 모형을 제작하였으며 평가 결과 시그모이드 형태의 예측 모형이 가장 설명력이 좋았다. GDD와 피복면적을 조합한 다요인 생육예측 모형을 개발한 결과 생체중, 엽수, 엽면적의 결정계수가 0.9, 0.95, 0.89으로 단요인 예측모형보다 예측정확도가 개선된것을 확인할 수 있었다. 개발한 모형을 검증하기 위하여 검증시험포의 조사결과로 검증한 결과 관측 값과 예측 값의 결정계수는 0.91이며 RMSE가 134.2g으로 높은 예측 정확도를 보였다. 기존의 생육 관측의 경우 기상데이터로만 예측을 하거나 영상데이터로만 예측하는 경우가 많았는데 이는 현장의 상태를 반영하지 못하거나 배추가 결구 되는 특성을 반영하지 못해 예측 정확도가 낮았다. 두 예측방법을 혼합해 각 관측방법의 약점을 보완해 줌으로써 대한민국에서 수행되고 있는 기간채소 작황예측의 정확도를 높일 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 농림식품기술기획평가원의 노지분야스마트농업기술단기고도화사업(과제번호: 322032-3)의 지원을 받아 수행되었음. 본 연구는 2023년도 농촌진흥청 국립원예특작과학원 전문연구원 과정 지원사업에 의해 이루어진 것임.

References

  1. Ahn J.H., K.D. Kim, and J.T. Lee 2014, Growth modeling of Chinese cabbage in an alpine area. Korean J Agric For Meteorol 16:309-315. (in Korean) doi:10.5532/KJAFM.2014.16.4.309
  2. Choi B.O., S.W. Choi, and H.B. Lim 2020, An impact assessment of weather changes on yield and price for Chinese cabbage and Korean radish. J Rural Dev 43:21-47. (in Korean) doi:10.36464/jrd.2020.43.1.002
  3. Choi I.T., K.M. Shim, Y.S Kim, and M.P Jung 2017, Predicting harvest maturity of the 'Fiji' apple using a Beta distribution phenology model based on temperature. J Environ Sci Int 26:1247-1253. (in Korean) doi:10.5322/JESI.2017.26.11.1247
  4. Gilmore Jr. E.C., and J.S Rogers 1958, Heat units as a method of measuring maturity in corn. Agron J 50:611-615. doi:10.2134/agronj1958.00021962005000100014x
  5. Go S.H., D.H. Lee, S.I. Na, and J.H. Park 2022, Analysis of growth characteristics of kimchi cabbage using drone-based cabbage surface model image. Agriculture 12:216. doi:10.3390/agriculture12020216
  6. Hong S.Y., J. Hur, J.B. Ahn, J.M. Lee, B.K. Min, C.K. Lee, Y. Kim, K.D. Lee, S.H. Kim, G.Y. Kim, and K.M. Shim 2012, Estimating rice yield using MODIS NDVI and meteorological data in Korea. Korean J Remot Sens 28:509-520. (in Korean) doi:10.7780/KJRS.2012.28.5.4
  7. Hoogenboom G. 2000, Contribution of agrometeorology to the simulation of crop production and its applications. Agric For Meteorol 103:137-157. doi:10.1016/S0168-1923(00)00108-8
  8. Hwang S.W., J.Y. Lee, S.C. Hong, Y.H. Park, S.G. Yun, and M.H. Park 2003, High temperature stress of summer Chinese cabbage in alpine region. Korean J Soil Sci Fert 36:417-422. (in Korean)
  9. IPCC 2023, Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Core Writing Team, H Lee, J Romero, eds, IPCC, Geneva, Switzerland, pp 35-115. doi:10.59327/IPCC/AR6-9789291691647
  10. Kerkech M., A. Hafiane, and R. Canals 2018, Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput Electron Agric 155:237-243. doi:10.1016/j.compag.2018.10.006
  11. Kim D.W., H.S. Yun, S.J. Jeong, Y.S. Kwon, S.G. Kim, W.S. Lee, and H.J. Kim 2018b, Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery. Remot Sens 10:563. doi:10.3390/rs10040563
  12. Kim K.D., J.T. Suh, J.N. Lee, D.L. Yoo, M. Kwon, and S.C. Hong 2015, Evaluation of factors related to productivity and yield estimation based on growth characteristics and growing degree days in highland kimchi cabbage. Korean J Hortic Sci Technol 33:911-922. (in Korean) doi:10.7235/hort.2015.15074
  13. Kim N.W., J.H. Lee, K.H. Cho, and S.H. Kim 2020, Korean Climate Change Assessment Report 2020. Meteorological Administration, Seoul, Korea. (in Korean)
  14. Kim S.G., J.H. Lee, H.J. Lee, S.G. Lee, B.H. Mun, S.W. An, and H.S. Lee 2018a, Development of prediction growth and yield models by growing degree days in hot pepper. Protected Hort Plant Fac 27:424-430. (in Korean) doi:10.12791/KSBEC.2018.27.4.424
  15. Kim D.W., H.S. Yun, S.J. Jeong, Y.S. Kwon, S.G. Kim, W.S. Lee, and H.J. Kim 2018b, Modeling and testing of growth status for Chinese cabbage and white radish with UAV based RGB imagery. Remot Sens 10:563. doi:10.3390/rs10040563
  16. Kim Y.T., S.H. Kim, and T.K. Kim 2011, Agricultural Management. KNOU Press, Seoul, Korea, pp 8-10. (in Korean)
  17. Lee J.H., H.J. Lee, S.K. Kim, S.G. Lee, H.S. Lee, and C.S. Choi 2017, Development of growth models as affected by cultivation season and transplanting date and estimation of prediction yield in kimchi cabbage. J Bio-Env Con 26:235-241. (in Korean) doi:10.12791/KSBEC.2017.26.4.235
  18. Lee J.W. 1996, A study of decision-making factors of production for radish and Chinese cabbage. KREI R346:39-67. (in Korean)
  19. Lee K., M. Allen, and R. Leep 2002, Predicting optimum time of alfalfa harvest. In Proc. Tri-state Dairy Nutrition Conference, Fort Wayne. Ohio State University, Columbus, OH, USA, pp 149-152.
  20. Lee S.G., T.C. Seo, Y.A. Jang, J.G. Lee, C.W. Nam, C.S. Choi, K.H. Yeo, and Y.C. Um 2012, Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. J Bio-Env Con 21:271-275. (in Korean)
  21. Lim C.H., G.S. Kim, E.J. Lee, S.B. Heo, T.Y. Kim, Y.S. Kim, and W.K. Lee 2016, Development on crop yield forecasting model for major vegetable crops using meteorological information of main production area. J Clim Chang Res 7:193-203. (in Korean) doi:10.15531/ksccr.2016.7.2.193
  22. Maimaitijiang M., V. Sagan, P. Sidike, S. Hartling, F. Esposito, and F.B. Fritschi 2020, Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remot Sens Environ 237:111599. doi:10.1016/j.rse.2019.111599
  23. McMaster G.S., and W.W. Wilhelm 1997, Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291-300. doi:10.1016/S0168-1923(97)00027-0
  24. Miller P., W. Lanier, and S. Brandt 2001, Using growing degree days to predict plant stages. Ag/Extension Communications Coordinator, Communications Services, Montana State University-Bozeman, Bozeman, MO, USA, 59717:994-2721.
  25. Na S.I., C.W. Park, K.H. So, J.M. Park, and K.D. Lee 2017, Development of garlic & onion yield prediction model on major cultivation regions considering MODIS NDVI and meteorological elements. Korean J Remoe Sens 33:647-659. (in Korean) doi:10.7780/kjrs.2017.33.5.2.5
  26. Oh S.J., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh 2014, Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature effects of differentiated temperature. Korean J Hortic Sci Technol 32:318-329. (in Korean) doi:10.7235/hort.2014.13174
  27. Park S.H., H.R. Cho, S.B. Lee, J.S. Lee, and J.K. Kim 2021, Kimchi Cabbage. Rural Development Administration, Jeonju, Korea. (in Korean)
  28. Popescu D., F. Stoican, G. Stamatescu, L. Ichim, and C. Dragana 2020, Advanced UAV-WSN system for intelligent monitoring in precision agriculture. Sensors 20:817. doi:10.3390/s20030817
  29. QGIS Development Team 2023, QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  30. R Core Team 2023, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  31. Shahi T.B., C.Y. Xu, A. Neupane, and W. Guo 2023, Recent advances in crop disease detection using UAV and deep learning techniques. Remot Sens 15:2450. doi:10.3390/rs15092450
  32. Sim H.S., W.J. Jo, H.J. Lee, Y.H. Moon, U.J. Woo, S.B. Jung, S.R. Ahn, and S.K. Kim 2021, Determination of optimal growing degree days and cultivars of kimchi cabbage for growth and yield during spring cultivation under shading conditions. Korean J Hortic Sci Technol 39:714-725. doi:10.7235/HORT.20210063
  33. Son I.C., K.H. Moon, E.Y. Song, S.J. Oh, H.H. Seo, Y.E. Moon, and J.Y. Yang 2015, Effects of differentiated temperature based on growing season temperature on growth and physiological response in Chinese cabbage 'Chunkwang'. Korean J Agric For Meteorol 17:254-260. (in Korean) doi:10.5532/KJAFM.2015.17.3.254
  34. OpenDroneMap Authors 2020, https://github.com/OpenDroneMap/ODM
  35. Wei T., V. Simko, M. Levy, Y. Xie, Y. Jin, and J. Zemla 2017, Package 'corrplot'. Statistician 56:e24.
  36. Wi S.H., E.Y. Song, S.J. Oh, I.C. Son, S.G. Lee, H.J. Lee, B.H. Mun, and Y.Y. Cho 2018, Estimation of optimum period for spring cultivation of 'Chunkwang' kimchi cabbage based on growing degree days in Korea. Agric For Meteorol 20:175-182. (in Korean) doi:10.5532/KJAFM.2018.20.2.175
  37. Wi S.H., H.J. Lee, S.A. Ah, and S.K. Kim 2020a, Evaluating growth and photosynthesis of kimchi cabbage according to extreme weather conditions. Agronomy 10:1846. doi:10.3390/agronomy1021846
  38. Wi S.H., H.J. Lee, I.H. Yu, Y. Jang, K.H. Yeo, S. An, and J.H. Lee 2020b, Analysis of effect of environment on growth and yield of autumn kimchi cabbage in Jeonnam province using big data. Korean J Agric For Meteorol 22:183-193. (in Korean) doi:10.5532/KJAFM.2020.22.3.183
  39. Yang Q., L. Shi, J . Han, Y. Zha, and P. Zhu 2019, Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res 235:142-153. doi:10.1016/j.fcr.2019.02.022
  40. Zhang X., L. Han, Y. Dong, Y. Shi, W. Huang, L. Han, P. Gonzalez-Moreno, H. Ma, H. Ye, and T. Sobeih 2019, A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remot Sens 11:1554. doi:10.3390/rs11131554