• Title/Summary/Keyword: 초속경

Search Result 113, Processing Time 0.019 seconds

Diagnosis of Crack Occurrence of Very-Early Strength Latex-Modified Concretes through Field Tests (현장실험을 통한 VES-LMC 균열발생 원인분석)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.139-146
    • /
    • 2006
  • Many concrete bridge decks develop transverse cracking shortly after construction. These cracks accelerate corrosion of reinforcing steel and lead to concrete deterioration, damage to components beneath the deck, unsightly appearance. These cracks shorten the service life and increase maintenance costs of bridge structures. In this study, VES-LMC overlay, which provides the same benefits as a conventional overlay, is designed to cure very quickly. Although the materials for VES overlays are more expensive, the cost is more than offset by the savings on traffic control and work zone safety measures. Otherwise, reaction of hydration occurs very rapidly in beginning step(concrete placing). As a results, thermal cracking can be occur by thermal stress in accordance with hydration-heat The purpose of this study was to estimate diagnosis of crack occurrence of VES-LMC through field tests at early-age.

  • PDF

Rheological Properties of Super Early Hardening Cement Paste Using Set Controlling Agent (응결조절제를 첨가한 초속경 시멘트 페이스트의 유동 특성)

  • Yang Seung-Kyu;Um Tai-Sun;Lee Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.413-416
    • /
    • 2005
  • The super early hardening cement is widely used for reducing construction period. But there are some problems with handling the cement because the loss of workability is so big to control. In this study, the fluidity properties of super early hardening cement paste was evaluated at early age of hydration by using gel-time determination method. 4 types of set controlling agent were selected and combinations of them were used for gel-time test. As a result, the gel-time of super early hardening cement paste was extended up to 20 minutes by using the combinations of several types set controlling agent.

  • PDF

A Stud on the Water Vapor Permeability of Air Cell Structure of Ultra Rapid Harding Membrane Waterproofing Using Fixed Screw Hybrid Method (고정형 스크류 혼합 방식을 이용한 초속경 도막방수층 에어 셀 구조의 수증기투과성에 관한 연구)

  • Kim, Yun-Ho;Kim, Hyun-Min;Park, Jin-Sang;Song, Je-Young;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.225-226
    • /
    • 2013
  • Existing polyurethane membrane waterproofing has been raised defects such as heaving. Therefore, We will be utilizing as the basic experimental data by the water vapor permeability test to the air cell structure of ultra rapid harding membrane waterproofing using the static mixing system in this study.

  • PDF

Chemically Resistant Characteristic Analysis of the Liquid-Applied Membrane Waterproofing Materials of Rapid Hardening Spray Type Applied on the Concrete Structure (콘크리트 구조물에 적용되는 초속경 분사시공 도막 방수재료의 내화학 특성 분석 -폴리우레아, 폴리우레탄·우레아, 폴리우레탄 수지계 방수재료를 중심으로-)

  • Kim, Yun-Ho;Choi, Eun-Kyu;Park, Jin-Sang;Kim, Su-Ryun;Song, Je-Young;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.168-169
    • /
    • 2013
  • In this study, the chemical resistance of polyurea resin waterproofing and anti-corrosion materials that is applied to the social infrastructure was analyzed. The result in this study will be utilizing as a basic data for establishing the quality standards which are able to judge the chemically resistant characteristic of polyurea resin waterproofing and anti-corrosion materials.

  • PDF

Ingredients and cytotoxicity of MTA and 3 kinds of Portland cements (MTA와 포틀랜드 시멘트의 구성성분분석과 세포독성에 관한 연구)

  • Chang, Seok-Woo;Yoo, Hyun-Mi;Park, Dong-Sung;Oh, Tae-Seok;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.369-376
    • /
    • 2008
  • The aim of this study was to compare the compositions and cytotoxicity of white ProRoot MTA (white mineral trioxide aggregate) and 3 kinds of Portland cements. The elements, simple oxides and phase compositions of white MTA (WMTA), gray Portland cement (GPC), white Portland cement (WPC) and fast setting cement (FSC) were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD). Agar diffusion test was carried out to evaluate the cytotoxicity of WMTA and 3 kinds of Portland cements. The results showed that WMTA and WPC contained far less magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn) than GPC and FSC. FSC contained far more aluminum oxide ($Al_2O_3$) than WMTA, GPC, and WPC. WMTA, GPC, WPC and FSC were composed of main phases. such as tricalcicium silicate ($3CaO{\cdot}SiO_2$), dicalcium silicate ($2CaO{\cdot}SiO_2$), tricalcium aluminate ($3CaO{\cdot}Al_2O_3$), and tetracalcium aluminoferrite ($4CaO{\cdot}Al_2O_3{\cdot}Fe_2O_3$). The significance of the differences in cellular response between WMTA, GPC, WPC and FSC was statistically analyzed by Kruskal-Wallis Exact test with Bonferroni' s correction. The result showed no statistically significant difference (p > 0.05). WMTA, GPC, WPC and FSC showed similar compositions. However there were notable differences in the content of minor elements. such as aluminum (Al), magnesium, iron, manganese, and zinc. These differences might influence the physical properties of cements.

Mechanical Properties and Field Implementation of Floor Mortar Incorporated with VAE Polymer (VAE 폴리머를 이용한 모르타르 바닥재의 역학적 특성과 현작 적용성)

  • Bang, Jin-Wook;Lee, Sun-Mok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, the importance of the industrial warehouse floor has been increasing due to the development of the distribution and logistics industry. In this present study, an early-hardening polymer floor mortar which can compensate for the limitation of conventional cement based floor mortar regarding fluidity and long curing time was developed. In order to achieve the early-hardening of mortar characteristic ultra rapid hardening cement was used as binder. Four types of mixture proportions in accordance with the vinyl acetate ethylene(VAE) polymer contents with range from 10% to 20% and the other proto proportion without VAE polymer were designed. Mechanical experiments including the fluidity test, compressive strength test, bending test, bond test, and abrasion test were conducted for all mixture proportions. From the flow test result, it was possible to achieve the high flow with 250 mm by controlling the amount of superplasticizer. The incorporation of VAE polymer was found to affect the compressive strength reduction, however, the flexural strength was higher than that of the proto mixture, and it was evaluated to increase the compressive strength / flexural strength ratio. Moreover, at least 2.6 times higher bond strength and more than 4 times higher abrasion resistance were secured. From the mechanical experiments results, the optimum mixing ratio of the VAE polymer was determined to be 10%. As a result of application and monitoring, it shows that it has excellent resistance to cracking, discoloration, impact, and scratch as well as bond performance compared to the cement based floor mortar.

Mechanical Properties of Repair Mortar Incorporated with Bio Polymer (바이오 폴리머를 이용한 구조물 보수용 모르타르의 역학적 특성 평가)

  • Lee, Sun-Mok;Hyun, Jung-hwan;Kwon, Ki-Seong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.97-104
    • /
    • 2018
  • In recent years, more than 5,000 tons of sargassum honeri have been infested in the southern coast and the coast of Jeju Island, causing serious damage to the farms and fisheries, and environmental problems. The alginate contained in the sargassum honeri is a natural polymeric substance mainly used for medicines and foods. However, since there is no way to utilize it in large quantities, a study was carried out to utilize bio polymer obtained from sargassum honeri in producing polymer mortar for repairing deteriorated infrastructures. From the tests of setting time, it was found that the L0BP12 mixture containing 12% of bio polymer increased the setting time by 20% as compared with the L12BP0 mixture using only synthetic polymer. From the tests of water absorbtion, the LOBP12 combination decreased by 0.36% compared to Plain-URHC using ultra rapid hardening cement. This indicated that the watertightness of the mortar was increased by the incorporation of the bio polymer. In the compressive and flexural strength tests, the strength decreased as the amount of bio polymer increased. The incorporation rate of the maximum bio polymer satisfying the KS F 4042 standard was determined to be 12%. In addition, the bond strength of the mortar produced with biopolymer was higher than that of Plain-URHC specimens, and it was confirmed that incorporation of bio polymer improves bond strength of mortar.

Nonlinear Flexural Analysis of RC Beam Rehabilitated by Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트로 보강된 RC보의 비선형 휨해석)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Yong-Bin;Kang, Mun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4635-4642
    • /
    • 2010
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. One of the most advantages of the very early-strength latex-modified concrete (VES-LMC) could be the similar contraction and expansion behaviour to normal concrete substrate, which enable to ensure long-term performance. The purpose of this study was to parametric nonlinear flexural nonlinear analysis of RC beam rehabilitated by VES-LMC. The results were as follows; The flexural nonlinear analysis model of RC beam overlaid by VES-LMC in ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The proposed FE analysis model was verified by comparison of an experimental data and the FE analysis results. The FE analysis results showed that yield point as well as flexural stiffness increased as the depth increased; the stiffness of beam overall increased as the bond stiffness became larger; the bond strength between two different materials is a key factor in composite beam. A parametric study showed that an overlay thickness was a main influencing factor to the behavior of RC beam overlaid by VES-LMC.

Effect of Immersion and High Temperature on Shear Strength of Cemented Sand (수침 및 고온이 고결모래의 전단강도에 미치는 영향)

  • Moon, Hong Duk;Hwang, Keum-Bee;Kim, Tae-hun;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.17-30
    • /
    • 2023
  • This study investigates the impact of water immersion and high temperature on the shear strength of cemented sand through direct shear tests. Standard Jumunjin sand was used and cemented with binders, such as ultra-rapid hardening cement and an epoxy aqueous solution. The binder was mixed at concentrations of 4%, 8%, or 12%. Subsequently, cylindrical cemented specimens with a diameter of 64 mm and height of 25 mm were produced using compaction. The curing period was three days, and the specimens were cured under dry air, immersion, and heating conditions. The heating condition involved subjecting the immersed specimens to a microwave oven three times for three minutes to achieve an internal temperature of approximately 90℃. Regardless of the binder type, the cohesion of the cemented sand increased with higher binder content, whereas the internal friction angle exhibited a slight increase or decrease. Compared with ultra-rapid hardening cemented sand, epoxy-cemented sand displayed an average cohesion that was five times higher and an internal friction angle that was 10° higher. Overall, irrespective of binder type, the shear strength decreased during water immersion and increased during heating. Notably, the epoxy-cemented sand exhibited a three-fold increase in cohesion and a more than 20° increase in the internal friction angle during heating.

On the Rapid Hardening Cement (I) (초속경시멘트 제조에 관한 연구 (제1보 시멘트 제조))

  • 한기성;최상흘;한상목;서일영
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.2
    • /
    • pp.21-25
    • /
    • 1975
  • As the major alumina source, domestic alunite was applied to synthesize the clinker for rapid hardening cement. The main minerals of the clinker were found to be C3S, C11A7-CaF2 and some C4AF by means of chemical treatment, x-ray diffraction analysis and microscopic observation. Rapid hardening cement was made of the clinker by adding suitable amount of hemi-hydrite and anhydrite. The setting time of the cement was regulated with citric acid as setter.

  • PDF