• Title/Summary/Keyword: 초분

Search Result 297, Processing Time 0.026 seconds

Relativeness between Growth and Bio-informations of Aeroponically Grown Tomato as Influenced by Spray Intervals of Nutrient Solution (양액의 분무간격에 따른 분무경재배 토마토의 생장 및 생체정보와의 관련성)

  • 정순주;소원온;지전영남;영목방부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1992
  • This experiment was carried oui to determine the relativeness between growth, yield characters and bio-informations as influenced by the spray and rest time intervals of nutrient solution. Tomato(Lycopersicon esculentum Mill.) were grown in aeroponic system on a misting schedule of continuously 60 sec, 30 sec and 10 sec at 10 min intervals with full strength Yamazaki's solution recommended for tomato production. The results obtained were as follows : 1. Leaf area was highest in the plot of 30 sec spray and 10 min rest while the forest one was the plot of 60 sec spray and 10 min rest. Growth characteristics in terms of dry weight of each organ, number of flower, number of flower setted and fruit dry weight were greater in the plot of 30 sec spray and 10 min rest than the other treatments. 2. The number of flower increased with decreasing dry weight but number of flower sorted was not significantly different among treatment except for the plot of 60 sec spray and 10 min rest. 3. Leaf dry weight and fruit dry weight were highly correlated so that 30 sec spray and 10 min rest plot which is the highest fruit dry weight showed the largest leaf area. Continuously sprayed plot reduced markedly the fruit dry weight compared with leaf area. Optimum spray and rest time of nutrient solution in the range of this experiment was determined as 30 sec spray and 10 min rest. 4. Solar radiation within glasshouse during daytime reduced severely compared with outdoor one and air temperature within greenhouse was higher than the leaf temperature of tomato plant. The changes of environmental factors, solar radiation, temperature were accompanied with the sensitive change of bio-informations of tomato leaf Especially differences of spray intervals of nutrient solution affected greatly to the changes of bio-informations : leaf water potential, stomatal resistance and leaf temperature etc. 5. The changing patterns of leaf growth as influenced by the spray and rest intervals of nutrient solution were closely related to the leaf water potential, stomatal resistance and leaf temperature. Feasibility was demonstrated that measurement of bio-information of tomato leaf as influenced by the change of environmental factors could be expected to the amount of growth and fruit yield.

  • PDF

Soil Water Content Measurement Technology Using Hyperspectral Visible and Near-Infrared Imaging Technique (초분광 근적외선 영상 기술을 이용한 흙의 함수비 측정 기술)

  • Lim, Hwan-Hui;Cheon, Enok;Lee, Deuk-Hwan;Jeon, Jun-Seo;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.51-62
    • /
    • 2019
  • In this study, a simple method to estimate the soil water content variation in a wide area was proposed using hyperspectral near-infrared images. The reflectance data of a sand, granite soils, and a kaolinite were measured by reflecting the soil samples with different wavelengths in the visible and near-infrared (VNIR) regions using hyperspectral cameras. The measured reflectances and parameters were used to build a water content prediction model using the Partial Least Square Regression (PLSR) analysis. In the water content prediction model, the Area of Reflectance (Near-infrared, NIR) parameter was the most suitable parameter to determine the water content. The parameter was applicable regardless of the soil type, as the coefficient of determination (R2) exceeded 0.9 for each soil sample. Additionally, the mean absolute percentage error (MAPE) was less than 15% when compared with the actual water content of the soil. Therefore, the predictability of water content variation for soils with water content lower than 50% was confirmed. Accordingly through this study, the predictability of water content variation in several soil types using the hyperspectral near-infrared images was confirmed. For further development, a model that incorporates soil classification would be required to improve the accuracy of the model and to predict higher range of water contents.

Construction and Data Analysis of Test-bed by Hyperspectral Airborne Remote Sensing (초분광 항공원격탐사 테스트베드 구축 및 시험자료 획득)

  • Chang, Anjin;Kim, Yongil;Choi, Seokkeun;Han, Dongyeob;Choi, Jaewan;Kim, Yongmin;Han, Youkyung;Park, Honglyun;Wang, Biao;Lim, Heechang
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.161-172
    • /
    • 2013
  • The construction of hyperspectral test-bed dataset is essential for the effective performance of hyperspectral image for various applications. In this study, we analyzed the technical points for generating of optimal hyperspectral test-bed site for hyperspectral sensors and the efficiency of hyperspectral test-bed site. In this regard regions we analyzed existing construction techniques for generating test-bed site in domestic and foreign, and designed the test-bed site to acquire images from the airborne hyperspectral sensor. To produce a reference data from the image of constructed test-bed site, this study applied vicarious correction as a pre-processing and analyzed its efficiency. The result presented that it was ideal to use tarp for the vicarious correction, but it is possible to use the materials with constant spectral reflectance or with relatively low variance of spectral reflectance. The test-bed data taken in this study can be employed as the reference of domestic and foreign studies for hyperspectral image processing.

The Study on Spatial Classification of Riverine Environment using UAV Hyperspectral Image (UAV를 활용한 초분광 영상의 하천공간특성 분류 연구)

  • Kim, Young-Joo;Han, Hyeong-Jun;Kang, Joon-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.633-639
    • /
    • 2018
  • High-resolution images using remote sensing (RS) is importance to secure for spatial classification depending on the characteristics of the complex and various factors that make up the river environment. The purpose of this study is to evaluate the accuracy of the classification results and to suggest the possibility of applying the high resolution hyperspectral images obtained by using the drone to perform spatial classification. Hyperspectral images obtained from study area were reduced the dimensionality with PCA and MNF transformation to remove effects of noise. Spatial classification was performed by supervised classifications such as MLC(Maximum Likelihood Classification), SVM(Support Vector Machine) and SAM(Spectral Angle Mapping). In overall, the highest classification accuracy was showed when the MLC supervised classification was used by MNF transformed image. However, it was confirmed that the misclassification was mainly found in the boundary of some classes including water body and the shadowing area. The results of this study can be used as basic data for remote sensing using drone and hyperspectral sensor, and it is expected that it can be applied to a wider range of river environments through the development of additional algorithms.

Accuracy Assessment and Classification of Surface Contaminants of Stone Cultural Heritages Using Hyperspectral Image - Focusing on Stone Buddhas in Four Directions at Gulbulsa Temple Site, Gyeongju - (초분광 영상을 활용한 석조문화재 표면오염물 분류 및 정확도 평가 - 경주 굴불사지 석조사면불상을 중심으로 -)

  • Ahn, Yu Bin;Yoo, Ji Hyun;Choie, Myoungju;Lee, Myeong Seong
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.73-81
    • /
    • 2020
  • Considering the difficulties associated with the creation of deterioration maps for stone cultural heritages, quantitative determination of chemical and biological contaminants in them is still challenging. Hyperspectral image analysis has been proposed to overcome this drawback. In this study, hyperspectral imaging was performed on Stone Buddhas Temple in Four Directions at Gulbulsa Temple Site(Treasure 121), and several surface contaminants were observed. Based on the color and shape, these chemical and biological contaminants were classified into ten categories. Additionally, a method for establishing each class as a reference image was suggested. Simultaneously, with the help of Spectral Angle Mapper algorithm, two classification methods were used to classify the surface contaminants. Method A focused on the region of interest, while method B involved the application of the spectral library prepared from the image. Comparison of the classified images with the reference image revealed that the accuracies and kappa coefficients of methods A and B were 52.07% and 63.61%, and 0.43 and 0.55, respectively. Additionally, misclassified pixels were distributed in the same contamination series.

Development of Drought Stress Measurement Method for Red Pepper Leaves using Hyperspectral Short Wave Infrared Imaging Technique (초분광 단파적외선 영상 기술을 이용한 고추의 수분스트레스 측정 기술 개발)

  • Park, Eunsoo;Cho, Byoung-Kwan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • This study was conducted to investigate the responses of red pepper (Hongjinju) leaves under water stress. Hyperspectral short wave infrared (SWIR, 1000~1800 nm) reflectance imaging techniques were used to acquire the spectral images for the red pepper leaves with and without water stress. The acquired spectral data were analyzed with a multivariate analysis method of ANOVA (analysis of variance). The ANOVA model suggested that 1449 nm wavebands was the most effective to determine the stress responses of the red pepper leaves exposed to the water deficiency. The waveband of 1449 nm was closely related to the water absorption band. The processed spectral image of 1449 nm could separate the non-stress, moderate stress (-20 kPa), and severe stress (-50 kPa) groups of red pepper leaves distinctively. Results demonstrated that hyperspectral imaging technique can be applied to monitoring the stress responses of red pepper leaves which are an indicator of physiological and biochemical changes under water deficiency.

A Study on the Spectral Information and Reflectance Characteristic of Levee Crack (제방 균열의 분광정보 및 반사율 특성에 관한 연구)

  • Kim, Jong-Tae;Lee, Chang-Hun;Kang, Joon-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.17-24
    • /
    • 2020
  • This study examined the spectral information and reflectance of cracks of an embankment with drone-based hyperspectral imagery for crack detection. A Nano-Hyperspec mounted on a drone was used as a sensor, and hyperspectral videos of different intensities of illumination of the cracks on the embankment located in the downstream of Andong-Dam were obtained. An analysis of the data value of the illumination and peak data-value, the coefficients of determination were calculated to be 0.9864 of the uncracked areas and 0.9851 of the cracked area. The reflectance of each area showed a similar value and pattern, regardless of the intensity of illumination. This result may have occurred because the reference values of the white reference as the calculation criteria of reflectance varied according to the intensity of illumination. The reflectance at the cracked area was 5.65% lower in visible light and 4.58% lower in near-infrared light than that at the uncracked area. The detection of cracks may offer more precise results in further studies when the gimbal direction and camera angles of the drone are calibrated. Because hyperspectral imagery enables the detection of crack depths and types of clay minerals, which are difficult to identify in general RGB imagery, it can serve as a preemptive measure for evaluating the embankment stability.

An Adequate Band Selection for Vegetation Index of CASI-1500 Airborne Hyperspectral Imagery Using Image Differencing and Spectral Derivative (차연산과 분광미분을 이용한 항공 초분광영상의 식생지수 산출 적절밴드 선택)

  • Kim, Tae-Woo;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.16-28
    • /
    • 2013
  • Recently the various applications and spectral indices development of airborne hyperspectral imagery(A-HSI) has been increased. Especially the vegetation indices (VIs) were used to verify stress and vigor of vegetation. The VIs needs two or more spectral bands selectively to calculate as NIR(near infrared) and red wavelength. The A-HIS has specific band characteristics as narrow, continues and many. The A-HIS has narrow, continues and many specific band characteristics. That could be make it confuse which of bands could be explained for appropriate vegetation characteristics. If the A-HIS bands is not the same the wavelength with VIs' development band setting, then it need a selection adequate for spectral characteristics of target vegetation. Therefore we set 4 substitute bands for NIR and red wavelength respectively and calculated two VIs combined with substitute bands such as NDVI(normalized difference vegetation index) and MSRI(modified simple ratio index). To consider the variation of each VIs, we adapted the image differencing method of change detection technique. Also, we used spectral derivative to identify appropriate bands for spectral characteristics of digital forest cover type map. The result of adequate bands for two VIs selected red #3 as 680.2nm and NIR #2 as 801.7nm. This wavelength was good for any forest type in low variations.

An Analysis of Spectral Pattern for Detecting Pine Wilt Disease Using Ground-Based Hyperspectral Camera (지상용 초분광 카메라를 이용한 소나무재선충병 감염목 분광 특성 분석)

  • Lee, Jung Bin;Kim, Eun Sook;Lee, Seung Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.665-675
    • /
    • 2014
  • In this paper spectral characteristics and spectral patterns of pine wilt disease at different development stage were analyzed in Geoje-do where the disease has already spread. Ground-based hyperspectral imaging containing hundreds of wavelength band is feasible with continuous screening and monitoring of disease symptoms during pathogenesis. The research is based on an hyperspectral imaging of trees from infection phase to witherer phase using a ground based hyperspectral camera within the area of pine wilt disease outbreaks in Geojedo for the analysis of pine wilt disease. Hyperspectral imaging through hundreds of wavelength band is feasible with a ground based hyperspectral camera. In this research, we carried out wavelength band change analysis on trees from infection phase to witherer phase using ground based hyperspectral camera and comparative analysis with major vegetation indices such as Normalized Difference Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index (reNDVI), Photochemical Reflectance Index (PRI) and Anthocyanin Reflectance Index 2 (ARI2). As a result, NDVI and reNDVI were analyzed to be effective for infection tree detection. The 688 nm section, in which withered trees and healthy trees reflected the most distinctions, was applied to reNDVI to judge the applicability of the section. According to the analysis result, the vegetation index applied including 688 nm showed the biggest change range by infection progress.

Prediction of Internal Quality for Cherry Tomato using Hyperspectral Reflectance Imagery (초분광 반사광 영상을 이용한 방울토마토 내부품질 인자 예측)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Kim, Young-Sik
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.324-331
    • /
    • 2011
  • Hyperspectral reflectance imaging technology was used to predict internal quality of cherry tomatoes with the spectral range of 400-1000 nm. Partial least square (PLS) regression method was used to predict firmness, sugar content, and acid content. The PLS models were developed with several preprocessing methods, such as normalization, standard normal variate (SNV), multiplicative scatter correction (MSC), and derivative of Savitzky Golay. The performance of the prediction models were investigated to find the best combination of the preprocessing and PLS models. The coefficients of determination ($R^{2}_{p}$) and standard errors of prediction (SEP) for the prediction of firmness, sugar content, and acid content of cherry tomatoes from green to red ripening stages were 0.876 and 1.875kgf with mean of normalization, 0.823 and $0.388^{\circ}Bx$ with maximum of normalization, and 0.620 and 0.208% with maximum of normalization, respectively.