• Title/Summary/Keyword: 초기 설계

Search Result 3,441, Processing Time 0.026 seconds

Dynamic p-y Backbone Curves for a Pile in Saturated Sand (포화 사질토 지반에서의 동적 p-y 중추곡선)

  • Yang, Eui-Kyu;Yoo, Min-Taek;Kim, Hyun-Uk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.27-38
    • /
    • 2009
  • In this study, a series of 1 g shaking table model pile tests were carried out in saturated dense and loose sand to evaluate dynamic p-y curves for various conditions of flexural stiffness of a pile shaft, acceleration frequency and acceleration amplitude for input loads. Dynamic p-y backbone curve which can be applied to pseudo static analysis for saturated dense sand was proposed as a hyperbolic function by connecting the peak points of the experimental p-y curves, which corresponded to maximum soil resistances. In order to represent the backbone curve numerically, empirical equations were developed for the initial stiffness ($k_{ini}$) and the ultimate capacity ($p_u$) of soils as a function of a friction angle and a confining stress. The applicability of a p-y backbone curve was evaluated based on the centrifuge test results of other researchers cited in literature, and this suggested backbone curve was also compared with the currently available p-y curves. And also, the scaling factor ($S_F$) to account for the degradation of soil resistance according to the excess pore pressure was developed from the results of saturated loose sand.

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

A Study on the Development of Capacitor Exchange Type GDU of Propulsion Control Device of Electric Railway Vehicle Capable of Life Diagnosis (수명진단이 가능한 전기철도차량 추진제어장치의 커패시터 교환 형 GDU 개발에 관한 연구)

  • Kim, Sung Joon;Chae, Eun Kyung;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.475-484
    • /
    • 2018
  • The propulsion control device of an electric railway vehicle is a key main component corresponding to an engine of an automobile, and a device for controlling this is a device called a GDU (Gate Drive Unit). Also, when the frequency of failure of the propulsion control system was analyzed, the nonconformity ratio of GDU was the highest. GDU was not able to access core technologies due to the introduction of foreign products, and there were general problems with overall maintenance activities due to discontinuation of GDU of the manufacturer. The GDU has reached the end of its life with 23 to 14 years of long-term use.In order to solve these problems, this study was designed to identify the proper life span by analyzing compatible GDU's acquisition and failure, and to improve the existing system of maintenance focusing on health inspection. Maintenance of the components with a short life span compared to the entire service life is essential. Most foreign parts introduced at the beginning of the construction are not replaced due to technical problems or long-term operation. However, due to the characteristics of railway vehicles with a long life span of more than 25 years, it is necessary to maintain them for a long period of time. The study should be more concrete and empirical. The replacement type GDU of capacitors was able to easily measure the life of the capacitance by removing the capacitor modules, measure the life span of each unit test, and accurately perform preventive maintenance of the capacitor.

Experimental Study on the Diagnosis and Failure Prediction for Long-term Performance of ESP to Optimize Operation in Oil and Gas Wells (유·가스정 최적 운영을 위한 ESP의 장기 성능 진단 및 고장 예측 실험 연구)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2023
  • In general, electric submersible pumps (ESPs), which have an average life of 1.0 to 1.5 years, experience a decrease in performance and a reduction in life of the pump depending on oil and gas reservoir characteristics and operating conditions in wells. As the result, the failure of ESP causes high well workover costs due to retrieval and installation, and additional costs due to shut down. In this study, a flow loop system was designed and established to predict the life of ESP in long­term operation of oil and gas wells, and the life cycle data of ESP from the time of installation to the time of failure was acquired and analyzed. Among the data acquired from the system, flow rate, inlet and outlet temperature and pressure, and the data of the vibrator installed on the outside of ESP were analyzed, and then the performance status according to long-term operation was classified into five stages: normal, advice I, advice II, maintenance, and failed. Through the experiments, it was found that there was a difference in the data trend by stage during the long­term operation of the ESP, and then the condition of the ESP was diagnosed and the failure of the pump was predicted according to the operating time. The results derived from this study can be used to develop a failure prediction program and data analysis algorithm for monitoring the condition of ESPs operated in oil and gas wells.

Parameter Sensitivity Analysis of VfloTM Model In Jungnang basin (중랑천 유역에서의 VfloTM 모형의 매개변수 민감도 분석)

  • Kim, Byung Sik;Kim, Bo Kyung;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.503-512
    • /
    • 2009
  • Watershed models, which are a tool for water cycle mechanism, are classified as the distributed model and the lumped model. Currently, the distributed models have been more widely used than lumped model for many researches and applications. The lumped model estimates the parameters in the conceptual and empirical sense, on the other hand, in the case of distributed model the first-guess value is estimated from the grid-based watershed characteristics and rainfall data. Therefore, the distributed model needs more detailed parameter adjustment in its calibration and also one should precisely understand the model parameters' characteristics and sensitivity. This study uses Jungnang basin as a study area and $Vflo^{TM}$ model, which is a physics-based distributed hydrologic model, is used to analyze its parameters' sensitivity. To begin with, 100 years frequency-design rainfall is derived from Huff's method for rainfall duration of 6 hours, then the discharge is simulated using the calibrated parameters of $Vflo^{TM}$ model. As a result, hydraulic conductivity and overland's roughness have an effect on runoff depth and peak discharge, respectively, while channel's roughness have influence on travel time and peak discharge.

A Study on the Methods of Building Tools and Equipment for Digital Forensics Laboratory (디지털증거분석실의 도구·장비 구축 방안에 관한 연구)

  • Su-Min Shin;Hyeon-Min Park;Gi-Bum Kim
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.21-35
    • /
    • 2022
  • The use of digital information according to the development of information and communication technology and the 4th industrial revolution is continuously increasing and diversifying, and in proportion to this, crimes using digital information are also increasing. However, there are few cases of establishing an environment for processing and analysis of digital evidence in Korea. The budget allocated for each organization is different and the digital forensics laboratory built without solving the chronic problem of securing space has a problem in that there is no standard that can be referenced from the initial configuration stage. Based on this awareness of the problem, this thesis conducted an exploratory study focusing on tools and equipment necessary for building a digital forensics laboratory. As a research method, focus group interviews were conducted with 15 experts with extensive practical experience in the digital forensic laboratory or digital forensics field and experts' opinions were collected on the following 9 areas: network configuration, analyst computer, personal tools·equipment, imaging devices, dedicated software, open source software, common tools/equipment, accessories, and other considerations. As a result, a list of tools and equipment for digital forensic laboratories was derived.

Analyzing Planning Performance of Road Construction Projects Using Preliminary Feasibility Analysis Data (예비타당성조사 결과를 활용한 도로건설사업의 계획단계 성과 분석 연구)

  • Mun, Junbu;Yun, Sungmin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.1
    • /
    • pp.3-11
    • /
    • 2023
  • According to the post evaluation scheme in Korea of a public construction project which is more than 30 Billion KRW, project performance is evaluated by investigating outcomes and effects of the construction after the completion of the project. The current post evaluation results can be used for planning and estimating a construction project in the future. However, it is not easy to utilized for an on-going project because the system does not provide the phase-based performance of a project. Although project planning performance is important for project initiation, few attempt has been made to evaluate planning performance in Korea. The purpose of this study is to provide a conceptual performance evaluation of planning performance using preliminary feasibility study conducted by Korea Development Institute. This study developed a planning performance database using data extracted from preliminary feasibility study reports of the completed 354 road construction projects. This study analyzed the performance of the planning stage of road projects by developing absolute metrics such as standard construction cost and standard construction schedule based on a Lane-Km. Using the standard construction cost and schedule metrics, the planning performance was analyzed by project characteristics. The results of this study can be used for phase-based performance evaluation from planning phase to construction phase.

The role of cognitive dissonance in development of negative attitudes toward the law (바늘 도둑이 소도둑 된다: 준법의식의 약화에서 인지부조화의 역할)

  • Taekyun Hur;Jaewon Hwang;Jaeshin Kim
    • Korean Journal of Culture and Social Issue
    • /
    • v.11 no.1
    • /
    • pp.25-42
    • /
    • 2005
  • The present research examined the proposition that once people violate traffic regulations, they would experience cognitive dissonance and subsequently engage in changing their attitudes toward the law negatively in order to reduce the dissonance. In an experiment, participants were presented with three scenarios in which a person violated traffic laws, and they were asked to imagine themselves as the person of the scenarios and write statements supporting the unlawful behaviors. Participants' attitudes toward the general traffic law and the regulations related to the violations were measured 8 weeks before and right after the experimental treatment. The results, as expected, showed that their attitudes toward the general traffic law and the specific regulations in the scenarios changed negatively after writing the statements. In each secnarios, the participants who chose to wrote statements supporting the unlawful behaviors showed great attitude changes that those who did not write the statements. Furthermore, attitudes toward the regulations that were not directly related to the scenarios did not change significantly, and participants who were expected to experience stronger dissonance arousal (e.g.., supported more unlawful behaviors or had have more positive attitudes toward the law before the experiment) showed greater attitude changes. These results support the effects of trivial unlawful behaviors on attitudes toward the law and strongly suggest the role of cognitive dissonance underlying the effects.

  • PDF

Implementation of IoT-Based Irrigation Valve for Rice Cultivation (벼 재배용 사물인터넷 기반 물꼬 구현)

  • Byeonghan Lee;Deok-Gyeong Seong;Young Min Jin;Yeon-Hyeon Hwang;Young-Gwang Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.93-98
    • /
    • 2023
  • In paddy rice farming, water management is a critical task. To suppress weed emergence during the early stages of growth, fields are deeply flooded, and after transplantation, the water level is reduced to promote rooting and stimulate stem generation. Later, water is drained to prevent the production of sterile tillers. The adequacy of water supply is influenced by various factors such as field location, irrigation channels, soil conditions, and weather, requiring farmers to frequently check water levels and control the ingress and egress of water. This effort increases if the fields are scattered in remote locations. Automated irrigation systems have been considered to reduce labor and improve productivity. However, the net income from rice production in 2022 was about KRW 320,000/10a on average, making it financially unfeasible to implement high-cost devices or construct new infrastructure. This study focused on developing an IoT-Based irrigation valve that can be easily integrated into existing agricultural infrastructure without additional construction. The research was carried out in three main areas: Firstly, an irrigation valve was designed for quick and easy installation on existing agricultural pipes. Secondly, a power circuit was developed to connect a low-power Cat M1 communication modem with an Arduino Nano board for remote operation. Thirdly, a cloud-based platform was used to set up a server and database environment and create a web interface that users can easily access.

Creation of Crack BIM in Bridge Deck and Development of BIM-FEM Interoperability Algorithm (교량 바닥판의 균열 BIM 생성 및 BIM-FEM 상호 연계 알고리즘 개발)

  • Yang, Dahyeon;Lee, Min-Jin;An, Hyojoon;Jung, Hyun-Jin;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.689-693
    • /
    • 2023
  • Domestic bridges with a service life of more than 30 years are expected to account for approximately 54% of all bridges within the next 10 years. As bridges rapidly deteriorate, it is necessary to establish an appropriate maintenance plan. Recent domestic and international research have focused on the integration of BIM to digitize bridge maintenance information and then enhance accessibility and usability of the information. Accordingly, this study developed a BIM-FEM interoperability algorithm for bridge decks to convert maintenance information into data and efficiently manage the history of maintenance. After creating an initial crack BIM based on an exterior damage map, bridge specification and damage information were linked to a numerical analysis that performs damage analysis considering damage scenarios and design loads. The spread of cracks obtained from the analysis results were updated into the BIM. Based on the damage spread information on the BIM, an automated technology was also developed to assess both the current and future condition ratings of the bridge deck. This approach can enable an efficient maintenance of the deck using the history data from bridge inspection and diagnosis as well as future information on cracks and defects. The expected early detection and prevention would ultimately improve the lifespan and safety of bridges.