• Title/Summary/Keyword: 체결 해석

Search Result 329, Processing Time 0.027 seconds

복합재연소관과 노즐의 결합부위에대한 응력 및 파손해석

  • Hong, Chang-Seon;Kim, Yong-Wan;Park, Ji-Yang;Jo, Won-Man;Jeong, Bal;Hwang, Tae-Gi
    • Defense and Technology
    • /
    • no.10 s.164
    • /
    • pp.43-44
    • /
    • 1992
  • 복합재 연소관과 노즐을 기계적 체결방법으로 결합하면 결합부위에서 재료의 불연속성과 기하학적 불연속성으로 인한 높은 응력집중이 발생해 구조적으로 매우 취약하게 됩니다. 복합재 연소관의 경우에는 내압을 받는 원통형 구조물이므로 기존의 평판에 대한 연구결과를 그대로 사용할수 없으므로, 이 글에서는 복합재 셀 구조물의 응력 및 파손 해석을 수행할수 있도록 1차전단변형 셀이론을 이용한 유한요소해석 프로그램을 개발하였습니다. 기계적체결부위의 모델링에 대해 검토하였으며 복합재료의 파손평가에 사용되는 여러가지 파손식을 적용해 비교하였습니다. 이 해석 방법을 이용해 복합재 연소관의 적층각, 볼트직경, 연소관의 끝단까지의 길이 등이 파손하중에 미치는 영향을 제시하였습니다

  • PDF

Structure analysis of metal gaskets in tightened flanges (플랜지 체결 시 금속 개스킷의 구조해석)

  • IN, S.R.;Yoon, B.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.475-484
    • /
    • 2006
  • The deformation, the stress distribution, and the contact pressure of gaskets used in sealing flanges of CF (Con-Flat) or IPD (Improved) type were calculated to investigate the possibility of analyzing and estimatimg the sealing performance under a given tightening condition for a specific flange system.

Optimum Design of Lock Snap-fit Using Design of Experiment (실험계획법을 이용한 이탈방지 스냅핏의 최적설계)

  • Son, In-Seo;Shin, Dong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.378-385
    • /
    • 2017
  • This study investigated the design of a snap fit, which is widely used for fastening plastic parts. We analyzed the assembly mechanism of a lock snapfit, measured the assembly force and separation force based on the design of experiments, and derived a regression equation through an analysis of variance. The response surface methodology was also used. Polybutylene terephthalate was used to fabricate specimens, and the assembly force and separation force were measured using a micro-tensile tester. The length, width, thickness, and interference were considered as factors. A second-order regression model was used to derive the regression equation. The assembly force decreased with increasing length and width, but it increased with increasing thickness and interference. The finite element method was used to analyze the assembly mechanics. The width decreased the assembly force by increasing the ductility. The influences of the factors for low assembly force and high release force were shown to be opposite to each other. It was necessary to design a structure that minimized the assembly force while maintaining an appropriate level of separation force.

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Parameter Estimation and Reliability Analysis Using Bayesian Approach for Bolted Joint and O-ring Seal of Solid Rocket Motor (고체 로켓 모터의 체결 볼트와 오링에 대한 베이지안 접근법 기반 모수 추정과 신뢰성 해석)

  • Gang, Jin Hyuk;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1055-1064
    • /
    • 2017
  • Since a device such as a rocket motor requires very high reliability, a reasonable reliability design process is essential. However, Korea has implemented a design method for applying a safety factor to each component. In classic reliability analysis, input variables such as mean and standard deviation, used in the limit state function, are treated as deterministic values. Because the mean and standard deviation are determined by a small amount of data, this approach could lead to inaccurate results. In this study, reliability analysis is performed for bolted joints and o-ring seals, and the Bayesian approach is used to statistically estimate the input variables. The estimated variables and failure probability, calculated by the reliability analysis, are derived in the form of probability distributions.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.

Behavior of Tension Clamp in Rail Fastening System (레일 체결장치 텐션클램프의 거동)

  • Choi, Shin-Hyung;Park, Beom-Ho;Yun, Kyung-Min;Bae, Hyun-Ung;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8812-8819
    • /
    • 2015
  • In a situation in which importance of rail fastening system is growing with increasing the construction of concrete track, an accident of tension clamp(the component of rail fastening system) breaking has been recently occurred. This results from various factors such as field condition, operating agency, running condition, traffic frequency and so on. Thus, the study for the behavior of tension clamp is required. In this paper, an experiment and finite element analysis(FEA) have been performed to analyse the mechanical behavior of tension clamp. The stress and displacement of tension clamp have been analyzed as the clamping force through a laboratory test, and they were compared with FEA results. Furthermore, the stress and displacement of the tension clamp are derived from train load condition applying the verified model, and the fatigue vulnerability of the tension clamp is identified through stress analysis.

Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis (궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석)

  • Lee, Kyoung Chan;Jang, Seung Yup;Jung, Dong-Ki;Byun, Hyung-Kyoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1179-1189
    • /
    • 2015
  • Continuous welded rail on bridge structure experiences typically a large amount of additional longitudinal axial forces due to longitudinal track-bridge interaction under temperature and traction/braking load effect. In order to reduce the additional axial forces, special type of fastener, such as ZLR and RLR or rail expansion joint should be applied. Sliding slab track system is known to reduce the effect of track-bridge interaction by the application of a sliding layer between slab track and bridge structure. This study presents track-bridge interaction analysis results of the sliding slab track and compares them with conventional fixed slab track on bridges. The result shows that the sliding slab track can significantly reduce the additional axil forces of the continuously welded rail, and the difference is more significant for long and continuous span bridge.

Identification of Structural Defects in Rail Fastening Systems Using Flexural Wave Propagation (굽힘파 전파 특성을 이용한 레일체결장치의 구조 결함 진단)

  • Park, Jeongwon;Park, Junhong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.38-43
    • /
    • 2014
  • An experimental method based on flexural wave propagation is proposed for identification of structural damage in rail fastening systems. The vibration of a rail clamped and supported by viscoelastic pads is significantly influenced by dynamic support properties. Formation of a defect in the rail fastening system induces changes in the flexural wave propagation characteristics owning to the discontinuity in the structural properties. In this study, frequency-dependent support stiffness was measured to monitor this change by a transfer function method. The sensitivity of wave propagation on the defect was measured from the potential energy stored in a continuously supported rail. Further, the damage index was defined as a correlation coefficient between the change in the support stiffness and the sensitivity. The defect location was identified from the calculated damage index.

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF