• Title/Summary/Keyword: 첨착

Search Result 63, Processing Time 0.028 seconds

Adsorption Capacity of H2S on the Impregnated Activated Carbon with NaOH (NaOH 첨착활성탄의 H2S 흡착능)

  • Lee, Suk-Ki;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-886
    • /
    • 2000
  • $H_2S$ adsorption characteristics of activated carbon adsorbent impregnated with NaOH were investigated. The concentrations of NaOH reagent were 1~8N and the particle size of activated carbon was $8{\times}30$ mesh. The experimental results showed that the BET surface area decreases from $1050m^2/g$ to $783m^2/g$ and acidity of activated carbon decreases from 0.541 meq/g-AC to 0 meq/g-AC, while pH increases from 9.56 to 10.86 when the impregnation ratio increases from 0.87% to 5.8%. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH increases with increasing temperature and $H_2S$ concentration and varies in the range of 17.87~30.34 mg/g-AC at adsorption temperature of $45^{\circ}C$, which is 2~3 times larger than that of pure activated carbon.

  • PDF

Manufacture of Iron, Copper and Silver Ions Impregnated Activated Carbon (철, 구리, 은염이 첨착된 활성탄의 제조)

  • Park, Seung-Cho;Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.384-388
    • /
    • 2006
  • The adsorption ability of polar and toxic substance was greatly enhanced by treating activated carbon with acid solution and impregnating iron, copper, or silver by using in 0.1 M $FeSO_4{\cdot}7H_2O,\;CuSO_4{\cdot}5H_2O,\;AgNO_3$ 300 mL per activated carbon 50 g. Physical and chemical properties of the metal impregnated activated carbons were measured using specific surface area, pore volume and size distribution, scanning eletron microscope(SEM), adsorption isotherm. When activated carbon was treated with acid, the quantity of impregnated metal increased about 1.3 times since the micropores were converted to mesopores or macropores. Both the physical absorption by micropores and chemical absorption by metal ions could be achieved simultaneously with the metal impregnated activated carbon because the capacity of micro pores did not change even after metal ions were impregnated.

Adsorption of Cesium from an Aqueous Solution Using Activated Carbon Impregnated with triethylenediamine (TEDA) (Triethylenediamine (TEDA)로 첨착된 활성탄소를 이용한 수용액에서 세슘의 흡착)

  • Jong-Soo Choi;Suk Soon Choi;Choong Jeon;Tae-Young Jeong;Jeong Hyub Ha;Jae-Hoon Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.65-71
    • /
    • 2023
  • Cesium discharged from nuclear power plants requires technology for safely treating, due to its harmfulness to the human body. In this work, activated carbon impregnated with triethylenediamine (TEDA) process was applied to effectively remove cesium dissolved in aqueous solution. The surfaces on the activated carbon were chemically modified with various TEDA concentrations (2.5, 5.0, 7.5, 10.0, and 12.5%) and the optimal TEDA concentration was obtained to be 5.0% by the assessment for cesium removal efficiency. In addition, when 5.0% TEDA-impregnated activated carbon was used to treat 5.0 and 10.0 mg/L of cesium, the removal efficiency was 71.5% and 61.1%, respectively. Also, it was found to be the chemical adsorption from the adsorption kinetics experiment by temperature change. A novel remediation technology developed in this study could be practically employed for removing cesium contained in surface and ground water.

Study of CO2 Adsorption Characteristics on Acid Treated and LiOH Impregnated Activated Carbons (산 처리 및 LiOH 첨착 활성탄에서 이산화탄소의 흡착 특성에 대한 연구)

  • Han, Jae Uk;Kim, Dae Jung;Kang, Min;Kim, Jin Won;Kim, Ji Man;Yie, Jae Eui
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.312-316
    • /
    • 2005
  • Adsorption characteristics of $CO_2$ on activated carbons were evaluated using dynamic adsorption method in a fixed bed with acid treatment, LiOH impregnation and water vapor supply. Physical and chemical properties of the activated carbons were measured using SEM, EDS, nitrogen adsorption, FTIR and XRD. Nitric acid treatment led to the decrease in BET surface area and the increase in oxygen content of virgin activated carbon, and it produced a new functional group that included nitrogen. For the reduction of BET surface area by LiOH impregnation, the nitric acid treated activated carbon (NAC) was less than the virgin activated carbon (AC). Large particles of LiOH were present on the carbon surface when the content of LiOH was over 2 wt%. The adsorbed amount of $CO_2$ on activated carbon in a fixed bed increased with the acid treatment, LiOH impregnation and water vapor supply. The XRD results indicated that LiOH was converted to $Li_2CO_3$ after the adsorption of $CO_2$ on LiOH precursor.

SO2 Adsorption Characteristics of PAN-based Activated Carbon Fiber Impregnated with Palladium and Gold Nanoparticles (팔라듐과 금 나노입자를 첨착한 PAN계 활성탄소섬유의 SO2 흡착특성)

  • Lee, Jin-Jae;Jun, Moon-Gue;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.467-474
    • /
    • 2007
  • The palladium and gold nanoparticles containing PAN-based active carbon fiber (ACF) with a high specific surface area were prepared. Using the BET, TEM, FE-SEM, and XPS, their specific surface area and pore volume, pore structure, and the change in surface oxygen groups with time were analyzed and $SO_2$ adsorption performances were investigated. Because of the impregnating process, the micropore volume was mostly decreased from 95.5% to 30.5~43.7% compared with the total pore volume. And the change in surface oxygen groups with time was higher for the metal salt than the nanoparticles. Also, $SO_2$ breakthrough time of PAN-ACFs impregnated with Au nanoparticles and metal salts did not change compared with that of the non-impregnated PAN-ACF. But the PAN-ACF impregnated with Pd nanoparticles (100 ppm) showed good $SO_2$ adsorption performance as the breakthrough time of 880 sec. These results indicated that the $SO_2$ adsorption performance depended on the change in surface oxygen groups with time and the moderate impregnation of Pd nanoparticles on the PAN-ACF caused the increase in the $SO_2$ adsorption performance by a catalytic action.

일산화탄소 제거를 위한 정화통용 첨착금속화합물 촉매의 특성

  • 박재만;김덕기;신채호;신창섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.301-304
    • /
    • 2002
  • 화재대피용 방독마스크의 주요한 기능은 상온에서의 일산화탄소 제거이며, 가장 효과적인 방법은 촉매에 의한 것이다. 일산화탄소 제거를 위한 호흡용 보호구의 정화통 충진재로써 범용으로 쓰이는 촉매는 Hopcalite로 Cu와 Mn이 혼합된 산화물 촉매이다. 그러나 이들 촉매는 상온에서 CO의 제거효율이 낮아 많은 양을 충진해야 하는 어려움이있다.(중략)

  • PDF

$H_2S$ Adsorption Characteristics and Property Analyses of Activated Carbon Adsorbent Impregnated with Basic Solutions (염기성용액으로 첨착시킨 활성탄의 물성분석 및 $H_2S$ 흡착특성)

  • Lee, Suk-Ki;Yim, Chang-Sun;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1011-1016
    • /
    • 2010
  • The $H_2S$ adsorption characteristics and property analyses of granular activated carbon adsorbent impregnated with basic solution such as NaOH, KOH, and $(CH_2CH_2OH)_2NH$ were investigated. The concentrations of NaOH and KOH reagent ranged over 1 to 5 M, The concentration of $(CH_2CH_2OH)_2NH$ was in the range of 0.1 to 1 M. Adsorption temperature($25{\sim}45^{\circ}C$) and adsorbate ($H_2S$) concentration (18.23 mg/L) were applied. The experimental results showed that the BET surface area of activated carbon impregnated with KOH decreases from $1,050\;m^2/g$ to $750\;m^2/g$, and the acidity of activated carbon impregnated with NaOH decreases from 0.541 meq/g-AC to 0 meq/g-AC, as the concentration of basic solution increases, while the pH of impregnated activated carbon increased from 9.54 to 10.94 for three basic solutions. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH, KOH, $(CH_2CH_2OH)_2NH$ increased with increasing temperature and $H_2S$ adsorption equilibrium capacity of the activated carbon impregnated with diethanolamine was much higher than other cases. At adsorption temperature of $45^{\circ}C$, the $H_2S$ adsorption equilibrium capacity of impregnated activated carbon was 2.0~3.3 times lager than that of pure activated carbon.

Enhancement of Ammonia Adsorption Performance by Impregnation of Metal Chlorides on Surface-Modified Activated Carbon (표면 개질 활성탄 위 금속 염화물의 첨착에 의한 암모니아 흡착 성능의 향상)

  • Song, Kang;Lim, Jeong-Hyeon;Kim, Cheol-Gyu;Park, Cheon-Sang;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.671-678
    • /
    • 2021
  • Effects of nitric acid treatment of an activated carbon and impregnation of metal chlorides on the activated carbon were investigated to improve ammonia adsorption performance. It was confirmed that functional groups such as hydroxyl and carboxyl groups were introduced onto a surface of the activated carbon with nitric acid treatment. Then, each metal chloride (NiCl2, MgCl2, CuCl2, MnCl2 or CoCl2) was impregnated onto the surface-modified activated carbon using an ultrasonic impregnation method. The physicochemical properties and ammonia adsorption performance of various impregnated activated carbons were observed. Metal chlorides were well dispersed by sonication and evenly distributed on the surface of the activated carbon. Despite the reduced specific surface area and pore volume, the surface-modified activated carbon impregnated with metal chlorides exhibited excellent ammonia adsorption performance. In particular, HNO3-NiCl2 AC prepared by impregnating NiCl2 showed the best ammonia adsorption capacity of 3.736 mmol·g-1, which was improved by about 57 times compared to that of an untreated activated carbon (0.066 mmol·g-1).