• Title/Summary/Keyword: 철 환원

Search Result 512, Processing Time 0.026 seconds

Separation of Ni and Fe from $H_2SO_4$ leaching solution of scrapped Fe-Ni alloy (Fe-Ni 합금(合金) 스크랩의 황산(黃酸) 침출액(浸出液)으로부터 Ni와 Fe의 분리(分離))

  • Yoo, Kyoung-Keun;Jha, Manis Kumar;Kim, Min-Seuk;Yoo, Jae-Min;Jeong, Jin-Ki;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2008
  • Cementation and solvent extraction processes were studied to separate nickel and iron ions from the $H_2SO_4$ leaching solution with 47 g/L $Fe(Fe^{2+}/Fe^{3+}=1.03),$, 23.5 g/L Ni and 0.90M $H_2SO_4$ which leached from Fe-Ni alloy. Iron powder was used as a reducing agent for the cementation of Ni ion from the leaching solution. The reduction percentage of Ni ion was $17{\sim}20%$ by adding 4 times stoichiometric amount of iron powder at $60{\sim}80$. This may result from the fact that the cementation of Ni ion occurred after the reduction of $Fe^{3+}$ to $Fe^{2+}$ and the neutralization of $H_2SO_4$ with iron powder. The cementation process was proved to be unfeasible for the separation/recovery of Ni ion from the leaching solution including $Fe^{3+}$ as a major component. $Fe^{2+}$ present in the leaching solution was converted to $Fe^{3+}$ for solvent extraction of Fe ion using D2EHPA in kerosene as a extractant. The oxidation of $Fe^{2+}$ to $Fe^{3+}$ was completed by the addition of 1.2 times stoichiometric amount of 35% $H_2SO_4$. 99.6% $Fe^{3+}$ was extracted from the leaching solution (23.5 g/L $Fe^{3+}$) by 4 stages cross-current extraction using 20 vol.% D2EHPA in kerosene. $NiSO_4$ solution with 98.5% purity was recovered from the $H_2SO_4$ leaching solution of scrapped Fe-Ni alloy.

A Study on environmental-friendly Cleaning for Si-wafers (환경친화적인 실리콘 웨이퍼 세정 연구)

  • Yoon, Hyoseob;Ryoo, Kunkul
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.79-84
    • /
    • 2000
  • In this study, to reduce the consumption of chemicals in cleaning processes, Si-wafers contaiminated with metallic impurities were cleaned with electrolyzed water(EW), which was generated by the electrolysis of a diluted electrolyte solution or ultra pure water(UPW). Electrolyzed water could be controlled for obtaining wide ranges of pH and ORP(oxidation-reduction potential). The pH and oxidation-reduction potential of anode water and cathode water were measured to be 4.7 and +1000mV, and 6.3 and -550mV, respectively. To analyze the amount of metallic impurities on Si-wafer surfaces, ICP-MS was introduced. Anode water was effective for Cu removal, while cathode water was more effective for Fe removal.

  • PDF

Effect of Non-Point Sources from Livestock composted Land - A case of cows manure - (축산퇴비의 농지환원시 비점오염원으로서 수계에 미치는 영향 - 우분을 중심으로 -)

  • Lee, Young-Shin;Lee, Hee-Jip;Hong, Sung-Chul;Oh, Dae-Min
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.81-88
    • /
    • 2009
  • The cows manure has been used as fertilizers in farmland because of enough nutrients. However, excess nutrients can be washed off during a storm and affected on nearby waterbodies. In this paper, the runoff characteristics from farmland were studied to determine the watershed runoff rate. As results of estimating, watershed runoff rates with short-term runoff are BOD 0.6%, CODcr 0.3 %, CODMn 0.1 %, T-N 0.8 % and T-P 1.0 % On the other hand, they with long-term runoff are BOD 3.6 %, CODcr 1.0 %, CODMn 0.9 %, T-N 4.9 % and T-P 4.8 %. It is clean that the watershed runoff rates increase according to the rainfall runoff time.

  • PDF

Protoplast Fusion of Streptomyces Tubercidicus (Streptomyces tubercidicus의 원형질체 융합)

  • 유진철;홍순우;하영칠
    • Korean Journal of Microbiology
    • /
    • v.24 no.4
    • /
    • pp.364-369
    • /
    • 1986
  • A procedure for the preparation, regeneration and fusion of protoplasts of Streptomyces tubercidicus was confirmed. Also, protoplast releasingprocesses from mycelia were observed by scanning electron microscope. Three types of protoplasts releasing processes-from the hyphal tip, hyphal end regions and lateral regions of the hyphae-were observed. More than 17% regeneration efficiency was obtained by regeneration medium that is composed of tryptone-yeast extract-sodium acetate-$MgCl_2-CaCl_2$-sucrose. Optimal concentrations of $Ca^{++},\;Mg^{++}$ and sucrose in the regeneration medium were 50mM, 0.4-0.5M respectively. Above 30% of fusion frequency of the protoplasts derived from two auxotrophic strains of S. tubercidicus was induced by polyethylene glycol 4000(60% w/v).

  • PDF

STM Studies of Keggin-type and Wells-Dawson-type Heteropolyacid Catalysts (Keggin 형 및 Wells-Dawson 형 헤테로폴리산 촉매의 STM 연구)

  • Park, Gyo Ik;Barteau, Mark A.;Jung, Ji Chul;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.163-168
    • /
    • 2009
  • Negative differential resistance(NDR) behaviors of Keggin-type and Wells-Dawson-type heteropolyacids with cation, heteroatom, and polyatom substitutions were investigated by scanning tunneling microscopy. A reliable correlation between NDR peak voltage and reduction potential of heteropolyacid catalysts was established. It was found that more reducible heteropolyacid catalyst showed NDR behavior at less negative voltage, regardless of the structural difference. Thus, NDR peak voltage of heteropolyacid catalyst could be utilized as a single correlating parameter for the reduction potential of heteropolyacid catalyst.

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

Metallic Mineralogical Characteristics of Forged Iron Axe from the Wood-framed Tomb at the Hwangseongdong, Gyeongju, Korea (경주 황성동 목곽묘 출토 단조 철부의 금속광물학적 특성)

  • Kim, Jeong-Hun;Yi, Ki-Wook;Lee, Chan-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.231-245
    • /
    • 2007
  • The forged iron axe of the middle 3rd Century found in the No. 2 wood-framed tomb from the Hwangseongdong site, Gyeongju is rectangular on the plane level. The iron axe shines in met-allic luster, which is light grey with pale creamy tint. The result of X-ray diffraction analysis shows that the axe consists of magnetite and geothite, which can explain why the composition and texture of the original ore has been kept intact. There are fine-grained quartz, calcite, mica, magnetite, amphibole, unknown tungsten minerals, pyroxene and olivine inside the axe. Those must be the impurities that they failed to remove in the thermal treatment process. Generally, the iron axe consists mainly of pearlite texture coexisting ferrite and cementite, and show high carbon contents with homogeneous distribution. It can be interpreted the axe was carburized after the material was made to resemble pure iron. The decarbonization work didn't go well along the process marks. Crude ores of the iron axe are possible utilized by magnetite from the Ulsan mine on the basis of the occurrences and inclusions. It's estimated that the original ore was bloom produced in low-temperature reduction and formed around in $727^{\circ}C$, which is eutetic temperature.

Characteristics of Converter Slag Aggregates Reformed by $SiO_2$ added Reduction ($SiO_2$를 첨가하여 환원개질한 전로슬랙의 골재특성)

  • ;T. R. Meadowcroft
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.52-62
    • /
    • 2000
  • In order to maximize the recycling of converter slag to the more valuable fields, such as high quality aggregates for construction, cement industry and flux for ion making. It will be very important to control the compositions and properties of converter slag to suit the purpose of utilizastion. In this study, converter slag (STELCO, CANADA) was mixed with 5%~30% $SiO_2$and 7% carbon, and then reduced at $1650^{\circ}C$. After the reduction was completed, the reformed slags were cooled to room temperature in the furnace. All of the slags were then characterized using SEM-EDX, XRD and chemical analysis. Also the compressive strengths and densities of the reformed slags were measured to compare with natural aggregates. XRD analysis shows that th phases of reformed slags are changed from bredigite+merwinite mixed phases of 10% $SiO_2$added reduction to akermanite phases of 20% and 30% $SiO_2$ added reduction. But the SEM-EDX analysis revealed that the phase distribution of the reformed slags was changed very sensitively and complicately depends on the change of slag compositions. And also the properties of reformed slags are changed very much depend on the phase distribution. About one third of Cadmium and on fifth of Vanadium are remained in reduction reformed converter slag. Another heavy metal elements such as cobalt, zinc, lead are removed up to more than 90-95% of original slag. The compressive strength and density of 25% $SiO_2$ added and reformed slag is very near to natural granite. This is superior more than 10% to Thyssen's $SiO_2$ added and oxidized converter slag aggregates.

  • PDF

Rates of Anaerobic Carbon Mineralization and Sulfate Reduction in Association with Bioturbation in the Intertidal Mudflat of Ganghwa, Korea (강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서 동물이 이에 미치는 잠재적 영향)

  • Mok, Jin-Sook;Cho, Hye-Youn;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • This study was carried out to quantify the rates of anaerobic mineralization and sulfate reduction, and to discuss the potential effects of benthic fauna on sulfate reduction in total anaerobic carbon respiration in Ganghwa intertidal flat in Korea. Anaerobic carbon mineralization rates ranged from 26 to 85 mmol $C\;m^{-2}\;d^{-1}$, which accounted for approximately 46 tons of daily organic matter mineralization in the intertidal flat of southern part of the Ganghwa Island (approximately $90\;km^2$). Sulfate reduction ranged from 22.6 to 533.4 nmol $cm^{-3}\;d^{-1}$, and were responsible for $31{\sim}129%$ of total anaerobic carbon oxidation, which indicated that sulfate reduction was a dominant pathway for anaerobic carbon oxidation in the study area. On the other hand, the partitioning of sulfate reduction in anaerobic carbon mineralization in October decreased, whereas concentrations of Fe(II) in the pore water increased. The results implied that the re-oxidation of Fe(II) in the sediments is stimulated by macrobenthic activity, leading to an increased supply of reactive Fe(II), and thereby increasing Fe(III) reduction to depress sulfate reduction during carbon oxidation.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.