• Title/Summary/Keyword: 철근 겹이음

Search Result 26, Processing Time 0.022 seconds

Behavior of Reinforcement Ratio on Concrete Beams Reinforced with Lab Spliced GFRP Bar (GFRP 보강근으로 겹이음된 콘크리트 보의 보강비에 따른 거동특성)

  • Choi, Yun Cheul;Park, Keum Sung;Choi, Hyun Ki;Choi, Chang Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2011
  • The use of glass-fiber-reinforced polymer (GFRP) bars in reinforced concrete (RC) structures has emerged as an alternative to traditional RC due to the corrosion of steel in aggressive environments. Although the number of analytical and experimental studies on RC beams with GFRP reinforcement has increased in recent decades, it is still lower than the number of such studies related to steel RC structures. This paper presents the experimental moment deflection relations of GFRP reinforced beam which are spliced. Test variables were different reinforcement ratio and cover thickness of GFRP rebars. Seven concrete beams reinforced with steel GFRP re-Bars were tested. All the specimens had a span of 4000mm, provided with 12.7mm nominal diameter steel and GFRP rebars. All test specimens were tested under 2-point loads so that the spliced region be subject to constant moment. The experimental results show that the ultimate moment capacity of beam increasing of the reinforcement ratio. Failure mode of these specimens was sensitively vary according to the reinforcement ratio. The change of beam effective depth, which was caused by cover thickness variation, controlled the maximum strength and deflection because of cover spalling in tension face.

Limited Ductile Capacity of Reinforced Concrete Bridge Pier with Longitudinal Steel Lap-splicing by Pseudo Dynamic Test (유사동적 실험에 의한 철근콘크리트 교각의 주철근 겹이음에 따른 한정연성능력)

  • 박창규;박진영;조대연;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.885-890
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach. Pseudo dynamic tests of four full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, three test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

Response of Bridge Piers Retrofitted by Stainless Steel Wire under Simulated Seismic Loading (내진 모사하중에 의한 스테인레스강 와이어 보강 교각의 응답)

  • Choi, Jun Hyeok;Kim, Sung Hoon;Lee, Do Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.343-350
    • /
    • 2009
  • In the present study, a new seismic retrofitting method that employs both a stainless steel wire mesh and a permeable polymer concrete mortar was proposed for reinforced concrete bridge piers with nonseismic design details. For this purpose, a total of six nonseismically designed bridge piers were tested under lateral load reversals. The test results reveal that nonseismically designed piers with lap splices need to be retrofitted to resist earthquake induced forces. In addition, it was proven that the proposed retrofitting method can be useful in improving the strength, stiffness, and energy dissipation capacities of bridge piers designed nonseismically. It is thus expected that the proposed method may provide an improved ductility capacity without sudden softening of strength for bridge piers excursing inelastic displacement range.

Experimental Method for Evaluating Debonding Strength of FRPs Used for Retrofitting Concrete Structures (콘크리트 휨부재 보강용 FRP의 부착성능 평가를 위한 실험방법 연구)

  • Utui, Nadia;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.36-41
    • /
    • 2011
  • This study proposes a experimental method to evaluate bonding strength of FRPs used for retrofitting concrete structures. Specimens are designed so that debonding failure of FRPs can be induced from reinforced concrete beams retrofitted with two layers of carbon and glass FRPs. And three-point loading tests are performed to see if debonding failure with proper debonding strength is observed from the specimens. The test results show that the tested beams are failed due to debonding of FRPs, therefore, the proposed test method is capable of evaluating debonding strength of FRPs using relatively small normal strength concrete beams.

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.