• Title/Summary/Keyword: 철근콘크리트구조물

Search Result 1,425, Processing Time 0.052 seconds

Pushover Analysis of Reinforced Concrete Wall-Frame Structures Using Equivalent Column Model (등가 기둥 모델을 이용한 철근콘크리트 전단벽-골조 구조물의 푸쉬오버 해석)

  • Kim, Yong Joon;Han, Arum;Kim, Seung Nam;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • RC shear wall sections which have irregular shapes such as T, ㄱ, ㄷ sections are typically used in low-rise buildings in Korea. Pushover analysis of building containing such members costs a lot of computation time and needs professional knowledge since it requires complicated modeling and, sometimes, fails to converge. In this study, a method using an equivalent column element for the shear wall is proposed. The equivalent column element consists of an elastic column, an inelastic rotational spring, and rigid beams. The inelastic properties of the rotational spring represent the nonlinear behavior of the shearwall and are obtained from the section analysis results and moment distribution for the member. The use of an axial force to compensate the difference in the axial deformation between the equivalent column element and the actual shear wall is also proposed. The proposed method is applied for the pushover analysis of a 5- story shear wall-frame building and the results are compared with ones using the fiber elements. The comparison shows that the inelastic behavior at the same drift was comparable. However, the performance points estimated using the pushover curves showed some deviations, which seem to be caused by the differences of estimated yield point and damping ratios.

Analysis of the Wireless Communication Environment in the Narrowed Residential Space for the Fire fighting Operation (소방작전을 위한 협소거주 공간의 무선 통신 환경 분석)

  • Park, Hyun-Ju;Hong, Sang-Beom;Choi, Hyuk-Jo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.242-248
    • /
    • 2017
  • Recently, Population has been concentrated in cities due to rapid economic growth. As a result, urban buildings are becoming more dense, high-rise, and diversified. The shape of these urban buildings increases the risk of fire, accidents and crime. The narrow living space has the characteristic of the unchanged floor. In case of a fire, the living space of the narrow residence is large in the damage because the smoke diffusion rate is fast. The radio wave transmittance and transmission distance of wireless communication used in fire fighting operations vary depending on the type of building materials and buildings. Therefore, this paper analyzes the building materials and structural characteristics of the narrow residential space for efficient fire fighting operations. We have developed a communication environment solution for a narrow residential space for the optimal fire fighting operation through the measurement of the radio wave transmittance and the transmission distance of the wireless communication.

Shear Performance of RC Beams Using Ductile Fiber Reinforced Cementitious Composite (DFRCC) (고인성 섬유 시멘트 복합재료를 사용한 RC보의 전단보강효과)

  • Eo, Seok-Hong;Son, Ki-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5844-5853
    • /
    • 2014
  • This paper presents the results of experimental investigations on the shear failure behaviors of reinforced concrete beams using ductile fiber reinforced cementitious composite (DFRCC). Total 10 RC beams of $150{\times}300{\times}1,000mm$ size were tested by 4-point bending under the displacement control. The main parameters of the experiment are surface treatment by grinding and preloading to the cracking point in the repair process. The load-displacement curves, diagonal tension cracking load, flexural cracking load, and shear strength were obtained. The test results showed that the DFRCC can be used effectively for restoring the shear strength approximately 99% to the original value under the condition that the appropriate thickness and surface treatment like grinding are assured. For further research, the specimens taken from real deteriorated structures will need to be tested after being repaired with DFRCC.

Analysis of segment lining cracking load considering axial force by varying boundary condition (경계조건 변화에 의해 발생한 축력을 고려한 세그먼트 라이닝의 균열하중 분석)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Kang, Tae-Sung;Chang, Soo-Ho;Choi, Soon-wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In the design of tunnel segment structure, axial and moment forces are considered as significant forces. Since axial force is much greater than moment force, the whole section of segment remains in compression. Therefore crack width can be reduced. But the axial force is not considered in criteria for serviceability check. This fact leads service condition more severe compared to ultimate condition and makes the required steel reinforcement increase to meet the serviceability criteria. In this study, the effect of axial force on serviceability of tunnel segment is evaluated, experimentally and analytically. Mock-up tests on segments with actual size were performed and investigated in terms of initial crack resistance. The evaluation proves that more comprehensive design could be achieved when the axial force is considered in the procedure for the serviceability check in design of tunnel segment.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 -)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

Natural Period Formula of a Reinforced Concrete Shear Wall Structure Considering Flange Wall Effect (플랜지형 벽체 효과를 고려한 철근 콘크리트 전단벽 구조물의 고유주기식)

  • Roh, Ji Eun;Kim, Joong Ho;Hur, Moo-Won;Park, Tae Won;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.55-62
    • /
    • 2018
  • In this study, natural period formular is presented for a RC shear wall structure with H-, T-, and L-shaped wall sections. The natural period formular proposed by Goel and Chopra and adopted in ASCE 7-10 was modified by using the ratio of the flange and web wall area. The natural periods of structures with H-shaped wall were numerically obtained, the results indicated that the ASCE 7-10 could not consider the natural period variation according to the length of the flange wall, but the proposed formula could do. Especially, ASCE 7-10 estimated much longer periods than eigenvalue analysis, and this implies that conservative seismic design is difficult. The periods by eigenvalue analysis exist between the upper and lower bounds given by the proposed formula, and conservative design is possible by using the proposed lower bound value. In order to verity the effectiveness of the proposed method, actual residential buildings with various types of flange walls are considered. Ambient vibration tests, eigenvalue analyses, and nonlinear dynamic analyses were conducted and the periods were compared with the values by ASCE 7-10 and the proposed formula. The results showed that the proposed formula could estimate more accurately the periods than ASCE 7-10.

Dynamic Characteristics of Reinforced concrete axisymmetric shell with shape imperfection (형상불완전을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.151-159
    • /
    • 2000
  • Dynamic loading of structures often causes excursions of stresses will into the inelastic range and the influence of geometry changes on the response is also significant in may cases. In general , the shell structures designed according to quasi-Static analysis may collapse under condition of dynamic loading. Therefore, for a more realistic prediction on the lad carrying capacity of these shell. both material and geometric nonlinear effects should be considered. In this study , the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a Total Lagrangian formulation. the reinforcing bars are modeled by the equivalent steel layer at the location of reinforcements, and Von Mises yield criteria is adopted for the steel layer behavior. Also, Drucker-Prager yield criteria is applied for the behavior of concrete. the shape imperfection of dome is assumed as 'dimple type' which can be expressed Wd1=Wd0(1-(r-a)m)n while the shape imperfection of wall is assumed as sinusoidal curve which is Wwi =Wwo sin(n $\pi$y/l). In numerical test, three cases of shape imperfection of 0.0 -5.0cm(opposite direction to loading ; inner shape imperfection)and 5cm (direction to loading : outward shape imperfection) and thickness of steel layer determined by steel ratio of 0,3, and 5% were analyzed. The effect of shape imperfection and steel ratio and behavior characteristics of perfect shape shell and imperfect shape shell are identified through analysis of above mentioned numerical test. Dynamic behaviors of dome and wall according toe combination of shape imperfection and steel ratio are also discussed in this paper.

  • PDF

Development of Multidirection Incoming Salt Collector that Excludes Backward Wind (후풍의 영향을 배제한 다방향 비래염분 포집기 개발과 비래염분 포집에 관한 연구)

  • Park, Dong-Cheon;Ahn, Jae-Cheol;Kim, Woo-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.627-633
    • /
    • 2011
  • Evaluation of the amount of chloride ion coming from the sea is very important in assessing the life expectancy of Reinforced Concrete structures. Developed in Japan, the incoming salt collector has been used to this day. Unfortunately, the incoming salt collector has had a bad reputation, which is caused by backward wind. Backward wind causes a reduction of the amount of salt collected in collector's gauze. The collector was developed to eliminate the effect of backward wind. Simulation test in the laboratory and site measurement were performed to determine the amount of incoming salt according to the height. The performance was verified through analytic and experimental methods.

Dynamic Characteristics of Reinforced Concrete Axisymmetric Shell with Initial Imperfection (초기결함을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성 -돔의 결함의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.77-85
    • /
    • 1999
  • In this study, a computer program considering initial imperfection of axisymmetric reinforced concrete shell which plastic deformation by large external loading was developed . Initial imperfection of dome was assumed as 'dimple type' which can be expressed as Wi=(Wo/h)(1-x$^2$)$^3$. The developed model applied to the analysis of dynamic response of axisymmetric reinforced concrete shell when it has initial imperfection. The initial imperfection of 0.0, -5.0, and 5cm and steel and steel layer ratio 0,3, and 5% were tested for numerical examples . The results can be summarized as follows ; 1. Dynmaic response of vertical deflection at dome crown showed slow increased if it has not inital imperfection . But the response showed relatively high amplitude when initial imperfection was inner directed (opposite direction to loading). Similar trends also appeared for different steel layer ratios. 2. Dynamic responses of radial displacement at the junction of dome and wall showed the highest amplitude when initial imperfection was inward directed (opposite direction to loading). The lowest amplitude occurred when initial imperfection was outward directed (same direction to loading). Vibration period also delayed for inward directed initial imperfection . These trends were obvious as steel layer ratio increasing. 3. The effects of imperfection for the dynamic response of radial displacement a the center of wall scarely appeared. The effects of initial imperfection of dome on the dynmaic response of the wall can be neglected. 4. Effect of steel on the dynmic response of axisymmetric shell structure was great when initial imperfection did not exist. And the effect of direction of initial imperfection (inward or outward) did not show big difference.

  • PDF

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF