• Title/Summary/Keyword: 천연액화가스

Search Result 317, Processing Time 0.028 seconds

The pressure drop characteristics in LNG heat exchanger of cryogenic cascade refrigeration cycle (초저온 캐스케이드 냉동사이클의 LNG 열교환기 압력강하 특성)

  • Yoon, J.I.;Choi, K.H.;Kwag, J.W.;Son, C.H.;Baek, S.M.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.376-381
    • /
    • 2012
  • Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600th of its standard volume. This gives LNG the advantage in transportation. The pressure dorp of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work of cryogenic cascade liquefaction cycle.

  • PDF

The Development of a Heat Balance Evaluation Program for the Main Steam Line of LNG Carrier (LNG선 주증기계통의 열평형산전용 전산프로그램 개발)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.854-861
    • /
    • 1998
  • The demand of LNG as a cheap and clean energy which does not cause an environmental problem has sharply been increased in Korea. In general LNG is stored in a cargo tank specially designed as a liquid state below $-162^{\circ}C$. The main engine of a LNG carrier is generally a steam boiler because LNG is a highly flammable fluid with the possibility of explosion. The main engine of a cargo ship has to be capable of the propulsion load and various auxiliary loads for the safe navigation since it is the primary energy source. Therefore the evaluation of a main boiler's energy capacity is a key design point in the planning of LNG carrier's construction. This research is to develop the computational program for the analysis of steam boiler Heat balance for LNG carrier.

  • PDF

Development and Performance Test on the 1-Inch Glove Valve for the LNG Piping System (LNG 배관 시스템용 1인치 글로브 밸브 개발 및 성능실험)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • This study describes the development of a 1-inch cryogenic glove valve for an LNG pumping system and localization development achieved through the performance test. The cryogenic valve used in the LNG pumping system plays an important role in maintaining a flow rate by LNG transportation. This trial manufactured goods, which was achieved through reverse engineering and developing the assembly process. The result of the leak test satisfied the internal pressure condition using the 78-bar normal temperature test and maintained the anti-leakage condition. Also, the result of the cryogenic leak test (BS 6364: low temperature test procedure) maintained anti-leakage at -196 and 52 bar, which satisfied the test standards.

An Experimental Study on Sea Water Freezing Behavior in a Cooled Circular Tube (원관내의 해수동결거동에 관한 실험적연구)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.680-686
    • /
    • 1998
  • In the adoption of a desalination system the most important factor is the cost of fresh water pro-duction. In general LNG is stored in a tank as a liquid state below $-162^{\circ}C$ When it is serviced however the LNG absorbs energy from a heat source and it is transformed to a high pressure gaseous state. During this process a huge amount of cold energy accumulated in cooling LNG is wasted. This wasted cold energycan be utilized to produce fresh water by using a sea water freez-ing desalination system. in order to develop a sea water freezing desalination system and to estab-lish its design technique qualitative and quantitative data regarding the freezing behavior of sea water is required in advance. The goals of this study are to reveal the freezing mechanisms of sea water in a cooled circular tube to measure the freezing rate and to investigate the freezing heat-transfer characteristics. The experimental results provide a general understanding of sea water freezing behavior in a cooled circular tube.

  • PDF

The Optimum Design of Internal Pipes for LNG Storage Tank (LNG 저장탱크용 관통 파이프의 설계 최적화 연구)

  • Seo, H.S.;Yang, Y.M.;Hong, S.H.;Kim, H.S.;Kim, Y.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.776-781
    • /
    • 2001
  • Internal pipes technology for LNG Storage tank developed because of the perceived safety risk of having an opening near the base of the shell. This is because the shell at this point is the most highly stressed component of the primary containment. other, secondary, problems arise because the movement of the tank in this region is also at a maximum. This requires the use of bellows either in the interspace or on the outside of the outer tank. Therefore the internal pipe, through the roof, solves these problems. The loading conditions calculated from design concept are then used to perform a pipe stress analysis. As well as determining the stresses in the internal pipe and checking against allowable stress, it determines the reaction forces at the support positions.

  • PDF

Slim Design for Membrane Type LNGC using 3X-Board (3X-Board를 적용한 멤브레인형 LNGC의 Slim화 설계)

  • Ryu, Sung-Heon;Cho, Jin-Rae;Ha, Mun-Keun;Lee, Joong-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1280-1285
    • /
    • 2003
  • In the developement of LNG cargo, the current concern focuses on the slim design of insulation layer to increase the LNG carrying capacity. Not only thermal stability with BOR(Boil-Off Rate) but structual stability against the LNG weight and the sloshing phenomenon must be also considered. In this paper, we applied the stitched sandwitch composite called the 3X-Board which is stitched through the core thickness direction using glass fiber to the LNG cargo. We evaluated the thermal and structural characteristics of 3X-Board by changing the core thickness and the material, in order to explore a validity for the slim design through the finite element analysis.

  • PDF

A Model Estimating the Ratigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress ratio (응력비의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.82-89
    • /
    • 1994
  • In this paper the effect of stress ratio on the fatigue crack growth rate of aluminum alloy A5083-O was examined. The fatigue tests were carried out using CCT (center cracked tension) specimens and CT(compact tension) specimens which were subjected to 0.5 and -1.0 stress ratio respectively. The obtained results are as follows; 1) The $\DeltaK_{th}$ as the function of stress ratio R was introduced in evaluating the fatigue crack growth rate of A5083-O. 2) A new model evaluating the effect of stress ratio on the fatigue crack growth rate was developed over the region of low and high propagation rate.

  • PDF

A Study on Pressure Vessel using Cold Stretch Method (냉연신 공법을 이용한 압력용기의 제조에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-160
    • /
    • 2018
  • A pressure vessel consists of an inner tank and the outer tank; the material of the inner tank is austenite stainless steel, and the outer tank is general carbon steel. As the storage amount increase, the size of the inner tank for LNG also increases, which eventually increases the weight of the LNG storage tank. The Cold Stretch method can transport and store the LNG in a larger amount than the conventional pressure container, and the weight of the pressure vessel can also be reduced at 50 70% due to the reduction of the thickness, which is excellent from an economic and energy consumption perspective. Although the Cold Stretch method has these advantages, the domestic situation has not developed any related legislation. In this study, the actual production of pressure vessels using the Cold Stretch method will be processed and the volume expansion after the Cold Stretch will be checked and compared with the mechanical properties.

A Development of LNG Pump Tower Analysis System (천연 액화 가스 운반선의 펌프타워 해석 시스템 개발)

  • Lee, Kwang-Min;Han, Sung-Kon;Heo, Joo-Ho;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.7-13
    • /
    • 2007
  • The purpose of this study is to develop a structural analysis system of LNG pump tower structure. The system affords to build optimized finite element model and analysis procedure of the pump tower structure. The pump tower structure is one of the most important components of LNG (liquefied natural gas) carriers. The pump tower structure is subject to sloshing load of LNG induced by ship motion depending on filling ratio. Three types of loading components, which are thermal, inertia and self-gravity are considered in the system. All these design and analysis procedures are embedded in to the analysis system successfully.

  • PDF

A Study on the Vacuum System for High Efficiency Marine Steam Turbine System (대형 터어빈계통의 고효율 배압시스템 개발에 관한 연구(I))

  • 김경근;윤석환;김용모;김종헌;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.13-24
    • /
    • 1994
  • The demand of clean energy, like liquefied gas(LNG), increase suddenly because it generates few polluting substances when burned and from the point of view with caloric value it generates ralatively less $CO_2$ gas than the other energy sources. LNG transpotion method of our country is marine transportion by ships because the LNG producing district is far away from Korea. Main engines for most LNG ships are steam turbines, and the efficiency of steam turbine is influenced by the degree of vacuum of main steam condenser. This paper introduce the design method of the vacuum system for high efficiency marine steam turbine. Especially, it is developed the CAD program for the large steam condenser and steam ejector. Also, it is designed the pilot plant including high pressure boiler for the performance test and maked a part of this plant.

  • PDF