• Title/Summary/Keyword: 천연모래

Search Result 62, Processing Time 0.028 seconds

Application of Screenings by-product of Crushing Rock in Quarry as Lean Concrete Pavement (산업부산물인 스크리닝스의 활용도 증진을 위한 린콘크리트 적용성 평가)

  • Kang, Min-Soo;Lee, Kyung-Ha;Suh, Young-Chan;Kim, In-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.75-81
    • /
    • 2012
  • In case of crushing rock to produce materials for lean concrete subbase layer in concrete pavement, natural sand is used for the gradation adjustment of aggregates, and the percentage of natural sand used is 30%~40% of the weight ratio of aggregate mix. The supply of natural sand that is used in lean concrete as a fine aggregate is getting harder due to the current of exhaustion of source, and the cost for the purchase of natural sand is included in the cost of roadway construction. This study, therefore, was conducted in order to resolve the exhaustion of materials and economize in construction expenditure by the application of screenings, which is by-product of crushing rock in quarry, as an alternative to natural sand. As a result of a comparative analysis on the application of screenings and natural sand with typical types of rock that is produced in domestic, which was conducted in the first year, It is found out that the use of screenings as a fine aggregate showed better unconfined compression strength. Verification of actual application of screenings was conducted in the second year, after test construction and follow-up investigation. The compressive strength, compaction density, settlement of screenings applied case was higher than that of natural sand. Thus, it is expected that application of screenings to construction in field will contribute to the cost saving, material recycling and the protection of environment.

  • PDF

Mixture Proportioning Approach for Low-CO2 Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand (천연모래 치환율에 기반한 저탄소 경량골재 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2016
  • The purpose of this study is to propose a mixture proportioning approach based on the replacement level of natural sand for reducing $CO_2$ emissions from artificial lightweight aggregate concrete(LWAC) production. To assess the effect of natural sand on the reduction of $CO_2$ emissions and compressive strength of LWAC, a total of 379 specimens compiled from different sources were analyzed. Based on the non-linear regression analysis using the database and the previous mixture proportioning method proposed by Yang et al., simple equations were derived to determine the concrete mixture proportioning and the replacement level of natural sand for achieving the targeted performances(compressive strength, initial slump, air content, and $CO_2$ reduction ratio) of concrete. Furthermore, the proposed equations are practically applicable to straightforward determination of the $CO_2$ emissions from the provided mixture proportions of LWAC.

Experimental Study on Characteristics of Natural Fiber Mat (수평 천연섬유배수재의 공학적 특성 평가를 위한 실험적 연구)

  • Kim, Ju Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.3-9
    • /
    • 2005
  • Natural fiber mat made with compressed coconut mat and jute filter is in the spotlight recently as an alternative material for sand mat, which is getting expensive in Korea. Tensile strength and permeability tests for the natural fiber mat were carried out to evaluate for its practical use in this study. Despite of very low tensile strength of coconut mat, that of jute filter was satisfied with conventional criteria of geotextile suggested by Christopher and Holtz(1985). Besides, permeability of fiber mat under high compressive pressure was greater than that of conventional sand material used as sand mat. It was found that the fiber mat has a great potential in substituting the conventional sand material.

  • PDF

Natural Sand in Korea - Quality Evaluation - (한국의 모래 -품질평가-)

  • Sei Sun Hong;Jin Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.185-204
    • /
    • 2024
  • This study was conducted for evaluation the geological, physical, and chemical properties of domestic sand by analyzing about 4,800 quality data of natural sand from river and land area surveyed until 2023 through the aggregate resource survey conducted by the Ministry of Land, Infrastructure and Transport. The average depth of the Quaternary unconsolidated sedimentary layer in Korea, which includes a sand layer, is about 10m (maximum depth 66m). The thickness of the sand layer within the sedimentary layer is most dominant in the range of 0.5m to 4.0m. This accounts for about 70% of the entire sand layer. In the sand layer, the ratio of sand, gravel, and clay is 60:20:10. Regardless of the provenance or geology, the sand is mainly composed of quartz, plagioclase, and K-feldspar, and the minor minerals are muscovite, biotite, chlorite, magnetite, epidote. The sand includes in 45~75% of quartz, 5~20% of plagioclase and K-feldspar, each other. And other minor minerals are included in 10%. The average grain size of sand is 0.5mm to 1.0mm, which accounts for 44% of sand samples. The water absorption rate and soundness are estimated to be suitable for aggregate quality standard in almost all sand, and the absolute dry density is suitable for 66%.

Influence of the Type of Fine Aggregate on Drying Shrinkage and Durability for Concrete (잔골재 종류가 콘크리트의 건조수축과 내구성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.249-255
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates we utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the shrinkage, durability and watertightness of concrete. Results revealed that drying shrinkage increases, and durability and watertightness degrades for concrete using crushed sand than natural fine aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the quality of concrete. In addition, appropriate adjustment of the grain shape and grade during the blending of crushed sand exhibiting bad grain shape and grade with natural aggregates appeared to enhance the shrinkage and durability of concrete.

A Study on the Evaluation of the Durability of Concrete Using Copper Slag Aggregates (동슬래그 골재를 함유한 콘크리트의 내구성 평가 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.773-784
    • /
    • 2008
  • Even if the exploitation of copper slag produced during the smelting process of copper as aggregate for construction purpose has been permitted since 2004 in Korea, the lack of sufficient data enabling to evaluate its long-term stability that is its durability has to date impeded its application. This study intends to investigate experimentally the durability characteristics of 18 and 27 MPa-class commercial concretes in which natural sand (fine aggregates) has been partially replaced by copper slag through accelerated and exposure tests so as to provide bases promoting the application of copper slag concrete. The experimental results revealed insignificant difference of the durability characteristics in most of the mix proportions in which 30% of natural sand was replaced by copper slag. In the case where crushed sand was adopted, tests verified similar characteristics for replacement ratio of 50%. Particularly, the results of the exposure test conducted during 8 years demonstrated that equivalent level of durability was secured compared to the case using natural sand. In the case of 18MPa-class lower grade concrete, exposure test verified also that the physical lifetime similar to 50 years could be secured until carbonation reaches cover depth of 20 mm.

Fundamental Characteristics of Concrete According to Fineness Modulus and Replacement Ratio of Crushed Sand (부순모래의 조립률 및 치환률에 따른 콘크리트의 기초 특성)

  • Yun, Yong-Ho;Choi, Jong-Oh;Lee, Dong-Gyu;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 2015
  • The paper evaluates the effect of the physical property, fineness modulus (FM) and replacement ratio of crushed sand on the characteristics of concrete. This is intended to use crushed sand from Daegu-Kyungbuk region as the fine aggregate of concrete. The experimental result indicates that the replacement ratio of crushed sand needs to be less than 50% to satisfy the mixed gradation of both natural and crushed sand when their FMs are 2.0 and 3.2, respectively. The slump of concrete with crushed sand increased as the replacement ratio of crushed sand increased, while the workability of concrete with the replacement ratio of more than 75% was significantly reduced. The air content and bleeding rate of concrete was reduced as the replacement ratio increased. Furthermore, due to the enhancement of the concrete adhesive regardless of the FM of crushed sand, compressive strength of concrete tended to improve as the replacement ratio increased.

Air Content, Workability and Bleeding Characteristics of Fresh Lightweight Aggregate Concrete (굳지 않은 경량골재 콘크리트의 공기량, 유동성 및 블리딩 특성)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.559-566
    • /
    • 2010
  • Fifteen lightweight concrete mixes were tested to evaluate the effect of maximum size of coarse aggregate and the replacement level of natural sand on the various properties of fresh lightweight concrete. The different properties, such as water absorption against the elapsed time, pore size distribution and micro-structure of lightweight aggregates used, influencing on the workability of fresh concrete were also measured. Test results showed that the initial slump of lightweight concrete decreased with the increase of the replacement level of natural sand. The slump of all-lightweight concrete sharply decreased by around 80% of the initial slump after 30~60 minutes. The air content and bleeding rate of lightweight concrete were significantly affected by the replacement level of natural sand as well as the maximum size of coarse aggregates. Empirical equations recommended in ACI 211 and Korea concrete standard specifications underestimated the air content of the lightweight concrete, indicating that the underestimation increases with the decrease of the replacement level of natural sand. In addition, equations to predict the air content and bleeding rate of lightweight concrete were proposed based on the test results.

Influence of the Type of Fine Aggregate on Concrete Properties (잔골재 종류가 콘크리트의 물성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.459-467
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. Following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates are utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the quality of concrete through the analysis of the effects of such fine aggregates on the physical properties of fresh concrete and strength of hardened concrete. Results revealed that crushed sand degraded the fluidity and air entraining of concrete compared to natural aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the physical properties of concrete. The type of fine aggregates appeared to have negligible influence on the strength for W/C of 55%, 45% while crushed sand decreased the strength for W/C of 35% compared to natural aggregates. It analyzed that the combination of crushed sand exhibiting bad grain shape and grade with natural aggregates improved the characteristics of fresh concrete and had negligible influence on the strength.

Mechanical Properties of Lightweight Aggregate Concrete according to the Substitution Rate of Natural Sand and Maximum Aggregate Size (천연모래 치환율과 경량 굵은 골재 최대 크기에 따른 경량 골재 콘크리트의 역학적 특성)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • The effect of the maximum aggregate size and substitution rate of natural sand on the mechanical properties of concrete is evaluated using 15 lightweight aggregate concrete mixes. For mechanical properties of concrete, compressive strength increase with respect to age, tensile resistance, elastic modulus, rupture modulus, and stress-strain relationship were measured. The experimental data were compared with the design equations specified in ACI 318-08, EC2, and/or CEB-FIP code provisions and empirical equations proposed by Slate et al., Yang et al., and Wang et al. The test results showed that compressive strength of lightweight concrete decreased with increase in maximum aggregate size and amount of lightweight fine aggregates. The parameters to predict the compressive strength development could be empirically formulated as a function of specific gravity of coarse aggregates and substitution rate of natural sand. The measured rupture modulus and tensile strength of concrete were commonly less than the prediction values obtained from code provisions or empirical equations, which can be attributed to the tensile resistance of lightweight aggregate concrete being significantly affected by its density as well as compressive strength.