• Title/Summary/Keyword: 천단변위

Search Result 93, Processing Time 0.025 seconds

Stability Analysis of the Spillway Tunnel Located on the Granite Region Including Fault Fractured Zone (단층파쇄대를 포함한 화강암지역의 여수로 터널 안정성 분석)

  • Han, Kong-Chang;Ryu, Dong-Woo;Kim, Sun-Ki;Bae, Ki-Chung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.58-68
    • /
    • 2008
  • The construction of an emergency spillway of Imha Dam is being in progress on the granite region including fault fractured zone. Considering that this tunnel is being excavated in three paralled rows, the pillar width between each tunnel and the face distance between each tunnel face were evaluated. The Influence of the fault fractured zone for the tunnel stability was investigated by numerical modelling in 3D. Various geophysical investigations and rock engineering field tests were carried out for these purposes. It was suitable that the second tunnel would be excavated in advance, maintaining the face distance between each tunnel face of minimum 25 m. The results of numerical modelling showed that the roof displacement and the convergence of the second tunnel were insignificant, and the maximum bending compressive stress, the maximum shear stress of shotcrete and the maximum axial force of rockbolt were also insignificant. Therefore, it was estimated that the stability of the spillway tunnel was ensured.

Stability evaluation of room-and-pillar underground method by 3D numerical analysis model (3차원 수치해석모델을 이용한 주방식 지하공간의 안정성 평가)

  • Byung-Yun, Kang;Sanghyuk, Bang;Choong-Ky, Roh;Dongkwan, Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • In this study, the stability of the room-and-pillar underground method was investigated using numerical analysis method. In-situ geotechnical investigation was conducted, and a supporting pattern was selected based on the geotechnical investigation data. For the supporting pattern, Type-1, 2, 3 were selected for each ground condition. A 3D numerical analysis model was developed for effective simulation as the room-and-pillar underground method consist of a pillar and room. As a review of numerical analysis, it was confirmed that the crown settlement, convergence, shotcrete and rock bolt were all stable in all supporting patterns. As a result of the analysis by the construction stage, it was confirmed that excessive stress was generated in the room when the construction stage of forming pillar. So, precise construction is required during the actual construction stage of the pillar formation.

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.

Development of Tunnel Convergence Measuring System (터널의 내공변위 계측 시스템 개발)

  • 정성혁;박찬홍;이재기
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.607-612
    • /
    • 2004
  • Together with the requirements of tunnels, its construction methods and technologies have been pretty much developed, but frequent accidents happened under the constructions are just one of important problems which should be improved. To detect the potential hazardous factors in or ahead of time, speedy and accurate measurement are absolutely required, but currently surveying method using tapes, level and total station, has been generally taken in measuring of tunnel convergence and crown. The purpose of this study is, as using of 'Industrial photogrammetry' system which is supplying more accuracy and speedy in the measure of tunnel convergence, aimed at promotion of tunnel measurement technique and development in unmanned automatic measuring system in the future finally.e finally.

  • PDF

A Case Study on the effects of Elephant Foot Method considering the rate of Changes in Tunnel Cross Section (터널 단면적 변화를 고려한 각부보강 영향성 평가)

  • Lee, Gil-Yong;Oh, Hyeon-Mun;Cho, Kye-Hwan;Oh, Jeong-Ho;Kim, Jong-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2018
  • In case of excavation of the tunnel under weak ground conditions, such as fault zone, leg pile reinforcement with the purpose of suppressing tunnel crown settlement and side wall displacement is commonly applied. There are convergence, crown settlement, leg settlement, and the axial force of leg as a main factor for confirming the safety of support considering the installation angle and length of leg pile reinforcement according to the increase in rate of change of tunnel cross-section. In particular, the influence of right corner settlement, among variables for safety confirmation during excavation, has been analyzed as the dominant factor in the most important priority management showing larger displacement tendency than the increase in rate of the cross-section. And, it was analyzed that the occurrence tendency of axial force on leg pile reinforcement showed the influence of behavior according to the friction support concept mechanism of the pile reinforcement rather than the increase in rate of tunnel cross-section, as it showed a small increase compared to the increase rate of the tunnel cross-section which did not show a great correlation from the viewpoint of the change of the axial force by the length of each leg pile reinforcement with regards to the change in rate of increase in tunnel cross-section. If a certain length of the leg pile reinforcement is selected based on the above grounds, even if the cross-section of the tunnel in poor ground condition is somewhat larger, it has been proved to be a more reasonable method considering the workability and economical efficiency by not extending the length of the leg pile reinforcement by force.

Section enlargement by reinforcement of shotcrete lining on the side wall of operating road tunnel (운영중인 도로터널의 측벽하부 숏크리트 보강에 의한 단면확대)

  • Kim, Dong-Gyou;Shin, Young-Wan;Shin, Young-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.637-652
    • /
    • 2012
  • The protector with the shape of '${\sqcap}$' in cross section can be set up in the tunnel, which can be constructed for enlargement of cross section, to keep traffic flow in the tunnel. It is impossible to install the rockbolt in the side wall of tunnel due to a limited space between the protector and cutting surface of side wall. The objective of this study is to suggest the optimum thickness of shotcrete lining without rockbolt on the side wall and to evaluate the stability of tunnel enlarged. Numerical analysis was performed to evaluate the displacement at the center of tunnel, the convergence of tunnel, and the stress in shotcrete lining in 4-lane NATM road tunnel enlarged from 3-lane NATM road tunnel. The vertical displacement at the center of tunnel and the convergence of crown in the tunnel with rockbolt in the side wall were almost similar to those in the tunnel without rockbolt in the side wall. The convergence of bench/invert and the stress in shotcrete lining without rockbolt on the side wall were greater maximum 0.57 mm and 1,300 kN/$m^2$ than those with rockbolt in the side wall. The increased convergence and the stress in shotcrete lining can be reduced in incerasing of thickness of shotcrete lining about 20% (5 cm) of standard thickness, 25 cm, of shotcrete lining.

Experimental study on the tunnel behavior induced by the excavation and the structure construction above existing tunnel (기존터널 상부지반 굴착 후 구조물 설치에 따른 터널거동에 관한 실험적 연구)

  • Cha, Seok-Kyu;Lee, Sangduk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.640-655
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structures. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process in the ground under the excavation basement can affect the existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effect of the excavation of the ground and the new structure load on the existing tunnel was experimentally implemented and the influence of the adjacent construction on the existing tunnel was investigated. For this purpose a large testing model with 1/5 scale of the actual size was manufactured. The influence of ground excavation, width of the load due to new structure, and distance between centers of tunnel and of excavation on the existing tunnel was investigated. In this study, it was confirmed that the influence on the existing tunnel gets larger, as the excavation depth get deeper. At the same distance, it was confirmed that the tunnel displacement increased up to three times according to the increase of the building load width. That is, the load width influences the existing tunnel larger than the excavation depth. As the impact of the distance between centers of tunnel and of excavation, it was confirmed that tunnel crown displacement decreased by 48%. The result showed that a tunnel is located in the range of 1D (D: tunnel diameter) from the center of excavation, the effect of excavation is the largest.

Comparative analysis of ground settlement and tunnel displacement due to tunnel excavation considering topographic information based on GIS (GIS 기반 지형 정보를 고려한 터널 굴착에 따른 지반침하와 터널 변위 비교 분석)

  • Jae-Eun, Cho;Ye-Rim, Jung;Seong-Min, Song;Ji-Seok, Yun;Sang-Gui, Ha;Han-Kyu, Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, as the development of underground spaces has become active due to rapid urbanization and population density, interest in the ground behavior according to the construction of underground spaces is increasing. In large cities with high population density and many buildings, ground subsidence has a great impact on structures and there may be a risk of collapse, so the analysis of ground behavior due to underground construction is essential. Previous studies have been conducted on the subsidence pattern of the surface and the deformation of the tunnel when constructing the tunnel, but analysis has rarely been conducted by using actual topographic information. Therefore, this study analyzed the difference in ground behavior between the actual topography and the flat topography. As a result, it was confirmed that ground settlement occurs at higher elevations, such as in mountainous topography, and when the numerical analysis is performed considering topographical information, the crown settlement of the tunnel is up to about approx. It showed a difference of 10 mm, and it was found that the sensitivity was less in the case of displacement of tunnel wall compared to the crown settlement and ground settlement. The numerical analysis considering the actual GIS-based topographic information presented in this study can be used to obtain more accurate surface subsidence data to understand the behavior of the upper structure due to tunnel excavation.

Field Measurements of Ground Movements Around Tunnel (현장계측에 의한 터널주변지반의 변위연구)

  • 홍성완;배규진
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-54
    • /
    • 1985
  • Generally, ground settlements and lateral displacements are accompanied by underground excavation associated with open-cut or tunnling. These ground movements cause a harmful influence upon nearby super.structures and sub-structures. Occasionally, the ground movements may pose serious problems as the function of the nearby structures may be disrupted. Therefore, prior to the subway construction in an urban area, it is necessary to identify the causes of ground settlements and estimating the extent St the magnitude of ground movements since any potential damage to the nearby structures such as gas lines, water mains, high buildings and cultural assets must be assessed. The research was performed mainly on ground movements such as surface settlements, lateral displacements, subsurface settlements and crown settlements to predict the maximum settlement and settlement zone, and to identify the causes of ground settlements in NATM sections of Busan subway. As a result, it was found that lateral distribution of settlements could be approximated reasonably by a Gaussian normal probability curve and longitudinal distribution of settlements by a cumulative Gaussian probability curve, and that the early closure of temporary invert was very important to minimize ground settlements.

  • PDF

Stability Analysis on the Intersection Area of Subway Tunnels by Observational Method (계측에 의한 지하철터널 교차부의 안정성 검토)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.71-79
    • /
    • 2005
  • The stability of the intersection area of two tunnels is analyzed by observational method. The depth from ground surface to the intersected area is shallow and the geology around the area consists of soil and/or weathered rock. The tunnel is supported by reinforced protective umbrella method with 12 m long 3-layer steel-pipes and the intersected area is additionally reinforced with 6 m long rockbolts. The measured displacements are converged and mechanical stability of the intersected area of two tunnels is confirmed; tunnel arch settles to 6-7 mm at the crown and the sidewalls converges to about 5 mm. So based on the displacement measurements, the supporting system for the tunnel intersection proves to be effective to not only reduce the deformation of tunnels but also maintain the stability of tunnels.