• Title/Summary/Keyword: 처분시스템

Search Result 307, Processing Time 0.024 seconds

Site Selection Methods for High-Level Radioactive Waste Disposal Facilities: An International Comparison (고준위방사성폐기물 처분시설 부지선정 방식 해외사례 분석)

  • HyeRim Kim;MinJeong Kim;SunJu Park;WoonSang Yoon;JungHoon Park;JeongHwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.335-353
    • /
    • 2023
  • Site selection processes for high-level radioactive waste disposal facilities in different countries differ in terms of local geology and degree of public engagement. There seem to be three alternative processes for site selection: (1) selection with community consent after government choice; (2) selection with continuous community engagement after exclusion of unsuitable areas based on existing survey data; or (3) site selection where communities have expressed a willingness to participate. The Yucca Mountain site in Nevada, USA, was selected as the final disposal site by process (1) through six stages, but its development was suspended owing to opposition from the local governor and environmental groups. In Sweden, Switzerland, and Germany, process (2) is used and sites are selected through three stages. Sweden and Switzerland have completed site selection, and Germany is currently engaged in the process. The UK adopted process (3) with six stages, although the process has been suspended owing to poor community participation. In Korea, temporary storage facilities for spent nuclear fuel will reach saturation from 2030, so site selection must be promoted through various laws and systems, with continuous communication with local communities based on transparent and scientifically undertaken procedures.

Blasting Impact by the Construction of an Underground Research Tunnel in KAERI (한국원자력연구소내 지하처분연구시설 건설에 따른 발파 영향)

  • Kwon Sang-Ki;Cho Won-Jin;Kim Deug-Su
    • Explosives and Blasting
    • /
    • v.23 no.4
    • /
    • pp.1-18
    • /
    • 2005
  • The underground research tunnel, which is under construction in KAERI for the validation of HLW disposal system, is excavated in a granite rock by drill&blasting. In order not to disturb the operation at the research facilities including Hanara reactor by the blasting for the excavation of $6m{\times}6m$ tunnel, a test blasting at the site was performed. Using the vibration equation derived from the test blasting, it was possible to predict the vibration at different locations at KAERI and to conclude that the blasting design would meet the design criteria at the major facilities in KAERI. The noise and vibration generated by the main blasting were continuously measured. In the case of vibration, the measured values were lower than the predicted one from the vibration equation. It is, therefore, concluded that the influence of blasting work for the construction of 280m long research tunnel on the major facilities in KAERIl would be insignificant.

Safety Assessment for LILW Near-Surface Disposal Facility Using the IAEA Reference Model and MASCOT Program (IAEA의 기준모델과 MASCOT 프로그램을 이용한 중저준위방사성폐기물 천층처분시설 안전성평가)

  • Kim, Hyun-Joo;Park, Joo-Wan;Kim, Chang-Lak
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • A reference scenario of vault safety case prepared by the IAEA for the near-surface disposal facility of low-and informed]ate-level radioactive wastes is assessed with the MASCOT program. The appropriate conceptual models for the MASCOT implementation is developed. An assessment of groundwater pathway through a drinking well as a geosphere-biosphere interface is performed first. then biosphere pathway is analysed to estimate the radiological consequences of the disposed radionuclides based on compartment modeling approach. The validity of conceptual modeling for the reference scenario is investigated where possible comparing to the results generated by the other assessment. The result of this study shows that the typical conceptual model for groundwater pathway represented by the compartment model ran be satisfactorily used for safety assessment of the entire disposal system in a cons]stent way. It is also shown that safety assessment of a disposal facility considering complex and various pathways would be possible by the MASCOT program.

Current Status and Tasks of Contaminant Migration Experiment Using Underground Research Laboratory (지하연구시설을 이용한 오염물질 이동실험 현황 및 과제)

  • Park, Chung-Kyun;Baik, Min-Hoon;Choi, Jong-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.17-25
    • /
    • 2007
  • Research and development for disposal of contaminants including radioactive wastes in deep underground have been carried out from laboratory works. However, validation and reliability of the data from the laboratory are arguing issues because they are not obtained from real disposal situations. Underground research laboratory (URL) is not only a solution to overcome such limitations, but also a valuable facility for performance assessment as an engineering scale. However, it requires much budget, and environmental issues can give rise to social conflicts easily. Such considering points related to URL are discussed as well as current status of worldwide URLs are introduced. Furthermore study plans for solute transport in a small-scale underground research tunnel (KURT), which was authorized recently as an non-radioactive facility in Korea, also described.

Validation of Performance of Engineered Barriers in a Geological Repository: Review of In-Situ Experimental Approach (심지층처분장 공학적방벽 성능 실증: 현장실험적 접근법 검토)

  • Cho, Won-Jin;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.137-164
    • /
    • 2018
  • The guarantee of the performance of the engineered barriers in a geological repository is very important for the long-term safety of disposal as well as the efficient design of the repository. Therefore, the performance of the engineered barriers under repository condition should be demonstrated by in-situ experiments conducted in an underground research laboratory. This article provides a review of the major in-situ experiments that have been carried out over the past several decades at underground research laboratories around the world to validate the performance of engineered barriers of a repository, as well as their results. In-situ experiments to study the coupled thermal-hydraulic-mechanical behavior of the engineered barrier system used to simulate the post-closure performance of the repository are analyzed as a priority. In addition, in-situ experiments to investigate the performance of the buffer material under a real repository environment have been reviewed. State-of-the art in-situ validations of the buffer-concrete interaction, and the installation of the buffer, backfill and plug, as well as characterization of the near-field rock and the corrosion of the canister materials are, also performed.

Evaluation of Mechanical Properties for the Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 역학 물성 평가)

  • Yoon, Seok;Hong, Chang-Ho;Kim, Taehyun;Kim, Jin-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.5-11
    • /
    • 2021
  • The compacted bentonite buffer is one of the most important components in an engineered barrier system (EBS) to dispose of high-level radioactive waste (HLW) produced by nuclear power generation. The compacted bentonite buffer has a crucial role in protecting the disposal canister against the external impact and penetration of groundwater, so it has to satisfy the thermal-hydraulic-mechanical requirements. Even though there have been various researches on the investigation of thermal-hydraulic properties, few studies have been conducted to evaluate mechanical properties for the compacted bentonite buffer. For this reason, this paper conducted a series of unconfined compression tests and obtained mechanical properties such as unconfined compressive strength, elastic modulus, and void ratio of Korean compacted bentonite specimens with different water content and dry density values. The unconfined compressive strength and elastic modulus increased, and the Poisson's ratio decreased a little with increasing dry density. It showed that unconfined compressive strength and elastic modulus were proportional to dry density. However, there was not a remarkable correlation between mechanical properties and water content.