• Title/Summary/Keyword: 처리습지

Search Result 320, Processing Time 0.025 seconds

Evaluation of Treatment Efficencies of Pollutants in Bongsan Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 봉산 인공습지의 오염물질 정화효율 평가)

  • Choi, Ik-Won;Moon, Sung-Dong;Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1089-1094
    • /
    • 2011
  • To treat non-point source pollution in Juam lake, removal efficiencies of pollutants were investigated in Bongsan constructed wetlands (CWs) at different treatment time, stages and wastewater loads. The constructed wetlands consisted of forebay, $1^{st}$ and $2^{nd}$ wetlands. The concentrations of BOD, SS, T-N, and T-P in inflow were $1.87mg\;L^{-1}$, $1.62mg\;L^{-1}$, $11.47mg\;L^{-1}$, and $4.40mg\;L^{-1}$, respectively. The removal rates of BOD, SS, T-N, and T-P in Bongsan CWs were 26, 18, 16 and 9%, respectively. The removal rates of BOD and T-N were higher than those for SS and T-P. The amounts of pollutant removal in Bongsan CWs were higher in the order of forebay > $1^{st}$ wetland > $2^{nd}$ wetland for BOD, forebay > $2^{nd}$ wetland > $1^{st}$ wetland for SS, $1^{st}$ wetland > forebay > $2^{nd}$ wetland for T-N and $2^{nd}$ wetland > forebay > $1^{st}$ wetland for T-P.

Analysis of Efficiencies in pro environmental constructed Wetlands for Treating sewage treatment effluent (친환경 인공습지 조성을 통한 하수처리 방류수 재처리 효과분석)

  • Lim, Gun Muk;Park, So Mi;Ha, Eun Jung;Lee, Jong Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.220-220
    • /
    • 2020
  • 영산강수계는 상류에 4개의 농업용 댐이 위치하여 환경대응용수 확보 및 하천유지유량이 절대적으로 부족하고, 갈수기 하천 유량의 약 67 %가 광주 제 1, 2 하수처리장 방류수가 차지하고 있어 하천의 수질과 수생태계를 위협하고 있다. 이에 최근에는 오염된 하천의 건강성을 회복하기 위한 방법으로 수생태계의 정화능력을 활용한 인공습지가 각광받고 있다. 영산강 유역에서도 자연의 정화능력을 활용하여 하천 오염원을 저감시키기 위한 사업의 일환으로 2016년 광주 제 2 하수처리장 방류구에 서창오미공원 습지를 조성하였다. 이 습지는 유입량이 적어 정상적 기능이 어려운 기존 습지를 재조성한 것으로 하수처리장 방류수 약 5만 ㎥/day을 습지로 유입시켜 수질정화용 식재식물을 이용하여 하수처리장 방류수 수질을 개선한 사업이다. 2016~2017년 모니터링 결과, 습지 유입 전·후 BOD는 평균 33.5 %, 최대 73.1 % 저감 되었으며, T-P 또한 평균 59.3 %, 최대 91.6 % 저감 되었다. 그러나 습지는 운영기간 경과 시 퇴적물 축적, 고사체로 인한 T-P 용출 등으로 인하여 처리수의 수질이 더 악화될 우려가 있기 때문에 습지 조성 후 지속적인 유지관리와 모니터링이 필요하다. 그 예로 하수처리장 방류수와 비점오염원 처리를 위해 주암호에 조성된 인공습지의 경우, 2001년 준공 후 지속적인 관리 및 모니터링을 통하여 약 17년이 지난 2018년에도 BOD 49.3 % T-N 65.1 %, T-P 19.2 % 로 저감되어 오염원 및 영양염류 제거에 큰 효과가 있는 것으로 나타났다. 따라서 본 조사에서는 서창오미공원과 주암호 인공습지 운영 결과를 토대로 습지 모니터링의 중요성과 적정 운영 방안을 제시하고자 하며, 영산강 하천의 점·비점오염원 저감을 위한 신규 인공습지 조성 사업에 기초자료로 활용하고자 한다.

  • PDF

Seasonal Effects of Livestock Wastewater Treatment by a Constructed Wetland (인공습지에 의한 축산폐수의 처리시 계절적 영향)

  • Park, Jae-Hong;Kwon, Soo-Youl
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.33-39
    • /
    • 2005
  • Constructed wetlands are considered as an important tool for wastewater treatment, wastewater management and flooding control. In addition, one of the most promising technologies for application in many countries seems to be constructed wetlands due to their properties such as utilization of natural processes, simple construction, operation and maintenance, process stability, cost effectiveness, etc. This research is performed to find the possibility for treating livestock wastewater using a constructed wetland. The removal efficiencies of CODcr, TN, TP, SS, and color were 97.9%, 97.8%, 97.2%, 99.1%, and 84.9%, respectively. In particular, SS was completely removed. In conclusion, constructed wetlands could be applied to livestock wastewater treatment. Further, it needs time for stabilization to reduce the pollutants accumulated in soil.

  • PDF

Constructed wetland design (기술정보 - 인공습지의 설계방안)

  • Eom, Han-Yong
    • 한국관개배수회지
    • /
    • no.43
    • /
    • pp.20-24
    • /
    • 2010
  • 담수호 및 농업용저수지의 유입수는 일반적으로 다유량 저농도의 특성을 갖고 있으며, 특히 강우시에는 유역의 노면에 집적된 비점오염물질이 넓은 면적에서 폭넓게 유출되어 유입되고 있어 기존의 하수처리공법에서와 같이 한곳에 모아 처리한다는 것은 현실적으로 어려움이 따른다. 넓은 유역을 갖는 수체에 적용될 수 있는 공법은 가급적 유지관리가 용이하고, 특히 호소의 주오염 특성인 부영양화 억제를 위한 질소 인 등의 영양 염류를 효과적으로 제거 할 수 있는 수질정화용 인공습지가 많이 검토되고 있다. 인공습지는 습지의 기능 중 수질정화 기능을 극대화 한 것으로 초기에는 도시하수유출 수의 처리를 위하여 사용되었으며, 점차 유기물의 부하농도가 높은 농업배수(축산 등)에 이용되기 시작 하였다. 강우 유출수, 도시하수, 농업배수, 광산 폐수 등의 점 비점오염물질을 저감하기 위한 수질개선시설로 적용이 점차 늘어나고 있다. 최근에는 강우유출과 같은 유출수의 수질을 관리하기 위한 기법으로 인공습지의 사용이 늘고 있다. 본고에서는 한국농어촌공사에서 수행한 습지관련 연구와 자료수집결과 등을 종합하여 인공습지의 기본적인 설계방안을 제시하고자 하였다.

  • PDF

Application of the Hybrid Constructed Wetland for a Reuse of the Effluent from Bio-industrial Wastewater Treatment Plant (바이오산업폐수처리수의 재이용을 위한 hybrid 인공습지 시스템의 적용가능성 연구)

  • Shin, Jae-Suk;Kim, Sung-Chul;Cho, Kwang-Ju;Choi, Choong-Ho;Choi, In-Wook;Park, Jeong-Ja;Park, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.115-121
    • /
    • 2009
  • The hybrid constructed wetland(HCW) as tertiary treatment process of a bio industrial wastewater treatment plant was employed to estimate applications for the reuse of final effluent. Raw wastewater was sequently treated through chemical and biological treatment processes and the biologically treated water was flowed into the HCW. The HCW system was composed of two constructed wetlands connected in series; The one is the aerobic constructed wetland with natural air draft system whose driving force for air supply was the difference between the temperature of the air inside the wetland and the ambient air, and the other is the anaerobic/anoxic constructed wetland. Average influent concentrations of BOD, SS, T-N and T-P in the HCW were 53mg/L, 48mg/L, 34mg/L and 3mg/L, respectively. After being treated at HCW, final effluent concentrations of BOD, SS, T-N and T-P were 2.3mg/L, 1.2mg/L, 7.95mg/L and 0.83mg/L, respectively. Referring to a reuse standard for a sewage wastewater, final effluent could sufficiently be reuse as landscaping, washing or agriculture water. HCW system with the aerobic/anaerobic combined constructed wetland could be achieved a high removal efficiency because each constructed wetland was functionalized to be removed efficiently organics, nitrogen and phosphorus. HCW system could be estimated to be successful application as tertiary treatment process of a various industrial and municipal wastewater.

  • PDF

Operating Status and Improvement Plans of Ten Wetlands Constructed in Dam Reservoirs in Korea (국내 10개 댐저수지 인공습지의 운영현황 및 개선방안)

  • Choi, Kwangsoon;Kim, Sea Won;Kim, Dong Sup;Lee, Yosang
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • To propose the improvement and management plans to strengthen the pollutant removal efficiency of dam reservoir's constructed wetlands(CWs), the operation status and configuration of CWs (including water depth, operational flow, water flow distribution, residence time, and pollutant removal efficiency, aspect ratio, open water/vegetation ratio etc.) were analyzed in 10 major wetlands constructed in dam reservoirs. The pollutant concentrations in the inflows of the studied CWs were lower than those of American and European constructed wetlands. Especially, organic matter concentrations in all of inflows were below 3 mg/L(as BOD) due to advanced treatment of sewage disposal plant and an intake of low concentration water during dry and normal seasons. The average removal efficiency of total nitrogen(TN) and total phosphorus(TP) for 10 CWs ranged from 7.6~67.6%(mean 24.9%) and -4.9~74.5%(mean 23.7%), respectively, showing high in wetlands treating municipal wastewater. On the other hand, the removal efficiency of BOD was generally low or negative with ranging from -133.3 to 41.7%. From the analysis of the operation status and configuration of CWs, it is suggested that the low removal efficiency of dam reservoir's CWs were caused by both structural (inappropriate aspect ratio, excessive open water area) and operational (neglecting water-level management, lack of facilities and operation for first flush treatment, lake of monitoring during rainy events) problems. Therefore, to enable to play a role as a reduction facility of non-point source(NPS) pollutants, an appropriate design and operation manuals for dam reservoir's CW is urgently needed. In addition, the monitoring during rainy events, when NPS runoff occur, must be included in operation manual of CW, and then the data obtained from the monitoring is considered in estimation of the pollutant removal efficiency by dam reservoir's CW.

Removal Efficiencies of Cations in Microcosm-scale Wetlands of Different types (소규모 인공습지에서 습지형태에 따른 양이온 제거 효율의 변이)

  • Kang, Hojeong;Song, Keunyea
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 2014
  • Constructed wetlands have widely been employed to improve water quality, but only a few studies have assessed removal efficiencies of cations in pond-type and marsh-type wetlands comparatively. This study conveys removal efficiencies of cations in those types of wetlands. High removal efficiencies of $NH_4{^+}$, $K^+$, $Mg^{2+}$ were observed, which appeared to be related to plant uptake and soil absorption. In contrast, release of $Ca^{2+}$ was distinctive in pond-type wetland of which mechanism is yet to be revealed.

Water Treatment Using Constructed Wetlands and Research Perspectives in Korea (인공습지를 이용한 수처리 효율 및 향후 연구제언)

  • Gang, Ho-Jeong;Song, Geun-Ye
    • Journal of Wetlands Research
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2004
  • More than 1000 natural and constructed wetlands have been used to improve water quality. The general results showed that the highest removal efficiency was 84% for BOD and the lowest one was 48% for total nitrogen concentration. In addition, total phosphous removal efficiency was 67%, and the removal efficiencies are related to inflow loading. Researches donducted in Korea have focused on input-output mass balance and uptake by aquatic plant. As such little information if available about complex processes regulating water quality and role of microbes. Therefore, to determine the optimal design for construct, and methods to operate constructed wetland, researches about complex mechanisms of contaminant removal and interdisciplinary researches are necessary.

  • PDF

Further Treatment of Constructed Wetland Effluent using Filter Materials (여재를 이용한 인공습지 유출수 추가처리)

  • Haam, Jong-Hwa;Kim, Hyung-Joong;Kim, Yeong-Kyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.9-16
    • /
    • 2009
  • Further treatment facility using various filter materials was evaluated to treat effluent of constructed wetland. Further treatment facility was installed with 1m length in outlet of 3 constructed wetland (unplanted constructed; reed bed constructed wetland; cattail bed constructed wetland) using 3 filter materials (slag, activated carbon, oyster shell). Flow rate of three further treatment facility was 63 $m^3$/day (slag), 19 $m^3$/day (activated carbon), and 81 $m^3$/day (Oyster shell). COD removal rate of slag, activated carbon, and oyster shell was 6 %, 24 %, 1 %, and removal mass was 32 g/day, 30 g/day, and 5 g/day, respectively. All of further treatment facility was effective to removal organic materials. T-N and T-P removal rate of activated carbon was 24 % and 4 %, and slag and oyster shell was not effective to remove T-N and T-P. Overall, further treatment facility was effective to remove organic mater, constructed wetland combined with further treatment facility can remove nutrient and organic matters effectively.

  • PDF

The Effect of Plant Coverage on the Constructed Wetlands Performance and Development and Management of Macrophyte Communities (식생피도가 인공습지의 질소 및 인 처리효율에 미치는 영향과 습지식물의 조성 및 관리)

  • Ham, Jong-Hwa;Kim, Hyung-Chul;Koo, Won-Seok;Shin, Hyun-Bhum;Yun, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.393-402
    • /
    • 2005
  • The field scale experiment was performed to examine the effect of plant coverage on the constructed wetland performance and recommend the optimum development and management of macrophyte communities. Four sets (each set of 0.88 ha) of wetland (0.8 ha) and pond (0.08 ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland system. Water depth was maintained at 0.3 ${\sim}$ 0.5 m and hydraulic retention time was managed to about 2 ${\sim}$ 5 days; emergent plants were allowed to grow in the wetlands. After three growing seasons of the construction of wetlands, plant coverage was about 90%, even with no plantation, from bare soil surfaces at the initial stage. During the start up period of constructed wetlands, lower water levels should be maintained to avoid flooding newly plants, if wetland plants are to be started from germinating seeds. Effluent T-N concentration in low plant coverage wetland was higher in winter than high plant coverage wetland, whereas no T-P effluent concentration and removal efficiency difference was observed within 15% plant coverage. Dead vegetation affected nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. Biomass harvesting is not a realistic management option for most constructed wetland systems because it could only slightly increase the removal rate and provide a minor nitrogen removal pathway due to lack of organic carbon.