• Title/Summary/Keyword: 착륙하중

Search Result 42, Processing Time 0.027 seconds

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

Analysis on Lander Shock Absorbing by Multi-Stage Extrusion of Hyper-Viscoelastic Material (초점탄성재료의 다중 압출에 의한 착륙선 충격완충 해석)

  • Lee, Choon Woo;Kim, In-Gul
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.34-41
    • /
    • 2017
  • As an alternative of the existing honeycomb shock absorbing device, the new approach on shock absorbing design using the extrusion of hyper-viscoelastic material such as silicon rubber is studied in this paper. The strain energy and stress-strain characteristic of viscoelastic material at extrusion process through the metered orifice has a similarity with the honeycomb core for maximizing shock absorbing capability. And in order to evaluate the design feasibility of this device and to understand the shock absorbing mechanism of energy transformation, finite element analysis and quasi-static compression test of the multi-stage extrusion shock absorber are examined in this paper.

Transient Responses of an Airplane Taking off from and Landing Very Large Floating Stricture in Waves (항공기 이 .착륙 시 초대형 부유식 해양구조물의 시간 영역 응답 해석)

  • 신현경;이호영;임춘규;강점문;윤명철
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.63-67
    • /
    • 2000
  • Up to this day, Most studies of hydroelasticity are inclined to frequency domain atnlysis. Thos amlysis Q the landing, take-4, and dropping of airaqft on a structure. So, the concern of this prrper is a tra a VLFS subjected to dymmic lazd induced by airplane larndirrg and take-off. To predict added mass, dampr exciting force, the source-dipole distribution method were used The responses are accomplished by Fdoimain analysis method is based on Newmark $\beta$ method to pursuit time step pnzcedure taking advantage function for hvdrodvnumic effects.

  • PDF

Transient Responses of an Airplane Taking off from and Landing on a Very Large Floating Structure in Regular Waves (규칙파중 항공기 이.착륙시 초대형 부유식 해양구조물의 천이 응답 해석)

  • 신현경;이호영;임춘규;강점문;윤명철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Up to now, Most studies of hydroelasticity are about frequency domain analysis. Those aren't suited for analysis of the landing take-off, and dropping of aircraft on a structure. So, the concern of this paper is the transient behavior of a VLFS subjected to dynamic load, induced by airplane landing and take-off. To predict the added mass, damping coefficient, and wave exciting force, the source-dipole distribution method was used in the frequency domain. The responses are accomplished by using the FEM scheme. A time domain analysis method is based on the Newmark β method to pursue the time step procedure, taking advantage of memory effect function for hydrodynamic effects.

  • PDF

The EDISON_CFD Analysis for Lift-enhancing tab of slotted flap (Slotted Flap 사이 양력 향상 탭의 영향에 대한 EDISON_CFD 분석)

  • Choe, Chi-Yeong;Lee, Jae-Gyeong;Lee, Do-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.437-441
    • /
    • 2013
  • 항공기의 날개에 걸리게 되는 하중은 설계단계에서 고정되기 때문에 이륙과 착륙 같은 특수한 상황에서는 Flap이나 슬렛 등의 고양력 장치를 이용하여 날개 단면 형상을 변화시킴으로서 양력계수의 변화를 유도하고 그에 따라 각 임무별 최적의 공력 성능을 제공할 수 있게 된다. 따라서 본 논문은 에어포일의 보다 효율적인 양력을 위해 slotted flap사이에 양력 향상 Tab을 설치하여 EDISON-CFD을 이용하여 분석하였다. 그리고 그 효과와 익형에 얻어지는 양력계수를 비교하였다. 에어포일의 Slotted Flap에 양력 향상 Tab의 유무에 따른 유동 장을 분석하여 양력을 수치 해석 적으로 비교해 보았다. 결과에서 얻어진 상수를 비교하였고 양력 향상 Tab의 효과를 분석해 보았다.

  • PDF

Structural Analysis and Light-Weight Design of Aircraft Floats with Laminated Composites (복합재 적층판을 이용한 경항공기 플로트 구조해석 및 경량화)

  • Choi, Youn-Gyu;Kim, Sung-Jun;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.65-71
    • /
    • 2012
  • In order to improve the structural safety and light-weight design of aircraft floats, natural frequency and static stress analysis are performed under water and ground landing conditions. A finite element mesh based on the design configuration of light aircraft floats is modeled, and simplified water and ground landing loads are applied to this model. The natural frequency and stress analysis of aluminum-alloy floats are carried out first. Then, the structural performance of the floats is re-analyzed in the case of laminated composites, and the numerical results are compared each other. It is concluded that, by tailoring the laminated composites with respect to stacking sequence and ply thickness, the structural safety of the light-weight floats can be improved.

Dynamometer Test Procedure of Metal Brake Pad for Part 25 Aircraft (수송류 항공기용 금속계 제동패드의 다이나모시험 절차)

  • Min-ji Kim;Kyung-il Kim;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.821-827
    • /
    • 2023
  • In this study, the aircraft technical standards of the Korea and the United States were analyzed to derive the dynamometer test procedure required to prove the compatibility for flight test certification of the metal brake pad for transport aircraft. Since the design modification of the brake systems is classified as a major change, the STC(Supplemental Type Certificate) and the PMA(Parts Manufacturer Approval) are required. In accordance with the TSO-C135a, the technical standard order for brake system in the United States, the design landing-stop test, accelerate-stop test, and most severe landing stop test were selected among the test items for flight test. The conditions for the dynamometer test are determined according to the specifications provided by aircraft manufacturer, and the brake pad condition, deceleration, and the number of test are defined according to the TSO-C135a.

A Study on Assessment of Fatigue Durability for Composite Torque Link of Landing Gear (착륙장치 복합재 토크링크 피로내구성 평가에 대한 연구)

  • Kwon, Jung-Ho;Kang, Dae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.537-546
    • /
    • 2010
  • This research work contributed to a study for the procedure and methodology to assess the fatigue durability for a composite torque link of helicopter landing gear, which was newly developed and fabricated by the resin transfer moulding technique to interchange with metal component. The simulated load spectrum anticipated to be applied to the torque link during its operation life was generated using an advanced method of probabilistic random process, and the fatigue durability was evaluated by the strength degradation approach on the basis of material test data. The full scale fatigue test was also performed and compared with the analysis results.

Fatigue Analysis based on Kriging for Flaperon Joint of Tilt Rotor Type Aircraft (틸트 로터형 항공기의 플랩퍼론 연결부에 대한 크리깅 기반 피로해석)

  • Park, Young-Chul;Jang, Byoung-Uk;Im, Jong-Bin;Lee, Jung-Jin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.541-549
    • /
    • 2008
  • The fatigue analysis is performed to avoid structural failure in aerospace structures under repeated loads. In this paper, the fatigue life is estimated for the design of tilt rotor UAV. First of all, the fatigue load spectrum for tilt rotor UAV is generated. Fatigue analysis is done for the flaperon joint which may have FCL(fracture critical location). Tilt rotor UAV operates at two modes: helicopter mode such as taking off and landing; fixed wing mode like cruising. To make overall fatigue load spectrum, FELIX is used for helicopter mode and TWIST is used for fixed wing mode. The other hand, the Kriging meta model is used to get S-N regression curve for whole range of material life when S-N test data are analyzed. And then, the second order of S-N curve is accomplished by the least square method. In addition, the coefficient of determination method is used to ensure how accuracy it has. Finally, the fatigue life of flaperon joint is compared with that obtained by MSC. Fatigue.

A Study on Lightweight Design of Cantilever-type Helideck Using Topology Design Optimization (위상 최적설계를 활용한 캔틸레버식 헬리데크 경량화 연구)

  • Jung, Tae-Won;Kim, Byung-Mo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.453-460
    • /
    • 2017
  • In the offshore industry, helicopters are mainly used for transportation of goods or operating personnel between offshore sites and onshore facilities. A helideck is a structure that is required for landing and take-off of helicopters on the offshore structure. There are several shapes of helidecks depending on the type of offshore structures or installation location. Among them, cantilever-type helidecks usually provide more space on the topside of offshore structures and it is safer against potential accidents like fire or explosion. In this paper, the cantilever-type helideck is selected for the research object and topology design optimization is applied for lightweight design of the helideck. A finite element model is then created from the optimal layout of truss structures of the helideck, and structural analysis is performed under various landing conditions and wind loads. Based on the analysis results, the detailed section dimensions of structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. Also, the final optimal design shows significant decrease in the total weight of the helideck.