• Title/Summary/Keyword: 차량 주변 환경 인식

Search Result 57, Processing Time 0.019 seconds

A License-Plate Image Binarization Algorithm Based on Least Squares Method for License-Plate Recognition of Automobile Black-Box Image (블랙박스 영상용 자동차 번호판 인식을 위한 최소 자승법 기반의 번호판 영상 이진화 알고리즘)

  • Kim, Jin-young;Lim, Jongtae;Heo, Seo Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.747-753
    • /
    • 2018
  • In the license-plate recognition systems for automobile black Image, the license-plate image frequently has a shadow due to outdoor environments which are frequently changing. Such a shadow makes unpredictable errors in the segmentation process of individual characters and numbers of the license plate image, and reduces the overall recognition rate. In this paper, to improve the recognition rate in these circumstance, a license-plate image binarization algorithm is proposed removing the shadow effectively. The propose algorithm splits the license-plate image into the regions with the shadow and without. To find out the boundary of two regions, the algorithm estimates the curve for shadow boundary using the least-squares method. The simulation is performed for the license-plate image having its shadow, and the results show much higher recognition rate than the previous algorithm.

A Moving Camera Localization using Perspective Transform and Klt Tracking in Sequence Images (순차영상에서 투영변환과 KLT추적을 이용한 이동 카메라의 위치 및 방향 산출)

  • Jang, Hyo-Jong;Cha, Jeong-Hee;Kim, Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.163-170
    • /
    • 2007
  • In autonomous navigation of a mobile vehicle or a mobile robot, localization calculated from recognizing its environment is most important factor. Generally, we can determine position and pose of a camera equipped mobile vehicle or mobile robot using INS and GPS but, in this case, we must use enough known ground landmark for accurate localization. hi contrast with homography method to calculate position and pose of a camera by only using the relation of two dimensional feature point between two frames, in this paper, we propose a method to calculate the position and the pose of a camera using relation between the location to predict through perspective transform of 3D feature points obtained by overlaying 3D model with previous frame using GPS and INS input and the location of corresponding feature point calculated using KLT tracking method in current frame. For the purpose of the performance evaluation, we use wireless-controlled vehicle mounted CCD camera, GPS and INS, and performed the test to calculate the location and the rotation angle of the camera with the video sequence stream obtained at 15Hz frame rate.

Fat Client-Based Abstraction Model of Unstructured Data for Context-Aware Service in Edge Computing Environment (에지 컴퓨팅 환경에서의 상황인지 서비스를 위한 팻 클라이언트 기반 비정형 데이터 추상화 방법)

  • Kim, Do Hyung;Mun, Jong Hyeok;Park, Yoo Sang;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.59-70
    • /
    • 2021
  • With the recent advancements in the Internet of Things, context-aware system that provides customized services become important to consider. The existing context-aware systems analyze data generated around the user and abstract the context information that expresses the state of situations. However, these datasets is mostly unstructured and have difficulty in processing with simple approaches. Therefore, providing context-aware services using the datasets should be managed in simplified method. One of examples that should be considered as the unstructured datasets is a deep learning application. Processes in deep learning applications have a strong coupling in a way of abstracting dataset from the acquisition to analysis phases, it has less flexible when the target analysis model or applications are modified in functional scalability. Therefore, an abstraction model that separates the phases and process the unstructured dataset for analysis is proposed. The proposed abstraction utilizes a description name Analysis Model Description Language(AMDL) to deploy the analysis phases by each fat client is a specifically designed instance for resource-oriented tasks in edge computing environments how to handle different analysis applications and its factors using the AMDL and Fat client profiles. The experiment shows functional scalability through examples of AMDL and Fat client profiles targeting a vehicle image recognition model for vehicle access control notification service, and conducts process-by-process monitoring for collection-preprocessing-analysis of unstructured data.

Advanced Lane Change Assist System for Automatic Vehicle Control in Merging Sections : An algorithm for Optimal Lane Change Start Point Positioning (고속도로 합류구간 첨단 차로변경 보조 시스템 개발 : 최적 차로변경 시작 지점 Positioning 알고리즘)

  • Kim, Jinsoo;Jeong, Jin-han;You, Sung-Hyun;Park, Janhg-Hyon;Young, Jhang-Kyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.9-23
    • /
    • 2015
  • A lane change maneuver which has a high driver cognitive workload and skills sometimes leads to severe traffic accidents. In this study, the Advanced Lane Change Assist System (ALCAS) was developed to assist with the automatic lane changes in merging sections which is mainly based on an automatic control algorithm for detecting an available gap, determining the Optimal Lane Change Start Point (OLCSP) in various traffic conditions, and positioning the merging vehicle at the OLCSP safely by longitudinal automatic controlling. The analysis of lane change behavior and modeling of fundamental lane change feature were performed for determining the default parameters and the boundary conditions of the algorithm. The algorithm was composed of six steps with closed-loop. In order to confirm the algorithm performance, numerical scenario tests were performed in various surrounding vehicles conditions. Moreover, feasibility of the developed system was verified in microscopic traffic simulation(VISSIM 5.3 version). The results showed that merging vehicles using the system had a tendency to find the OLCSP readily and precisely, so improved merging performance was observed when the system was applied. The system is also effective even during increases in vehicle volume of the mainline.

Technology Trends of Self-Driving Vehicles (자율주행 자동차 기술 동향)

  • An, K.H.;Lee, S.W.;Han, W.Y.;Son, J.C.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.4
    • /
    • pp.35-44
    • /
    • 2013
  • 과거 드라마로 인기를 끌었던 전격 Z 작전에서 키트는 우리에게 자율주행 자동차라는 환상을 심어주었다. 이러한 자율주행 자동차가 이제는 꿈이 아닌 현실로 다가오고 있다. 자율주행 자동차에 대한 정의를 내려보면 운전자의 개입 없이 주변환경을 인식하고, 주행 상황을 판단하여, 차량을 제어함으로써 스스로 주어진 목적지까지 주행하는 자동차를 말한다. 이러한 자율주행 자동차는 교통사고를 줄이고 교통 효율성을 높이며 연료를 절감하고 운전을 대신해줌으로써, 편의를 증대시킬 수 있는 미래 개인 교통수단이 될 것으로 기대된다. 본고에서는 자율주행 자동차의 기술 구성 요소와 관련된 기술 개발 동향에 대해서 기술하고, 자율주행 자동차가 실제 적용되기 위해 필요한 법적인 문제와 향후 전망에 대해서 살펴본다.

  • PDF

Comparison of Algorithms to find Continuous k-nearest Neighbors to be Appropriate under Gaming Environments (게임 환경에 적합한 연속적인 k-개의 이웃 객체 찾기 알고리즘 비교 분석)

  • Lee, Jae Moon
    • Journal of Korea Game Society
    • /
    • v.13 no.3
    • /
    • pp.47-54
    • /
    • 2013
  • In general, algorithms to find continuous k-nearest neighbors has been researched on the location based services monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, cases to find k-nearest neighbors are when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. Thus, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under the gaming environments.

Improved Object Recognition using Multi-view Camera for ADAS (ADAS용 다중화각 카메라를 이용한 객체 인식 향상)

  • Park, Dong-hun;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.573-579
    • /
    • 2019
  • To achieve fully autonomous driving, the perceptual skills of the surrounding environment must be superior to those of humans. The $60^{\circ}$ angle, $120^{\circ}$ wide angle cameras, which are used primarily in autonomous driving, have their disadvantages depending on the viewing angle. This paper uses a multi-angle object recognition system to overcome each of the disadvantages of wide and narrow-angle cameras. Also, the aspect ratio of data acquired with wide and narrow-angle cameras was analyzed to modify the SSD(Single Shot Detector) algorithm, and the acquired data was learned to achieve higher performance than when using only monocular cameras.

A Research on Improving the Shape of Korean Road Signs to Enhance LiDAR Detection Performance (LiDAR 시인성 향상을 위한 국내 교통안전표지 형상개선에 대한 연구)

  • Ji yoon Kim;Jisoo Kim;Bum jin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.160-174
    • /
    • 2023
  • LiDAR plays a key role in autonomous vehicles, and to improve its visibility, it is necessary to improve its performance and the detection objects. Accordingly, this study proposes a shape for traffic safety signs that is advantageous for self-driving vehicles to recognize. Improvement plans are also proposed using a shape-recognition algorithm based on point cloud data collected through LiDAR sensors. For the experiment, a DBSCAN-based road-sign recognition and classification algorithm, which is commonly used in point cloud research, was developed, and a 32ch LiDAR was used in an actual road environment to conduct recognition performance tests for 5 types of road signs. As a result of the study, it was possible to detect a smaller number of point clouds with a regular triangle or rectangular shape that has vertical asymmetry than a square or circle. The results showed a high classification accuracy of 83% or more. In addition, when the size of the square mark was enlarged by 1.5 times, it was possible to classify it as a square despite an increase in the measurement distance. These results are expected to be used to improve dedicated roads and traffic safety facilities for sensors in the future autonomous driving era and to develop new facilities.

Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR (라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 )

  • Yonghun Kwon;Inbum Jung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.

Robust Scheme of Segmenting Characters of License Plate on Irregular Illumination Condition (불규칙 조명 환경에 강인한 번호판 문자 분리 기법)

  • Kim, Byoung-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.61-71
    • /
    • 2009
  • Vehicle license plate is the only way to check the registrated information of a vehicle. Many works have been devoted to the vision system of recognizing the license plate, which has been widely used to control an illegal parking. However, it is difficult to correctly segment characters on the license plate since an illumination is affected by a weather change and a neighboring obstacles. This paper proposes a robust method of segmenting the character of the license plate on irregular illumination condition. The proposed method enhance the contrast of license plate images using the Chi-Square probability density function. For segmenting characters on the license plate, binary images with the high quality are gained by applying the adaptive threshold. Preprocessing and labeling algorithm are used to eliminate noises existing during the whole segmentation process. Finally, profiling method is applied to segment characters on license plate from binary images.