DOI QR코드

DOI QR Code

Comparison of Algorithms to find Continuous k-nearest Neighbors to be Appropriate under Gaming Environments

게임 환경에 적합한 연속적인 k-개의 이웃 객체 찾기 알고리즘 비교 분석

  • Lee, Jae Moon (Dept. of Multimedia Engineering, Hansung University)
  • 이재문 (한성대학교 멀티미디어공학과)
  • Received : 2013.05.21
  • Accepted : 2013.06.13
  • Published : 2013.06.20

Abstract

In general, algorithms to find continuous k-nearest neighbors has been researched on the location based services monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, cases to find k-nearest neighbors are when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. Thus, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under the gaming environments.

대부분의 연속된 k-개의 이웃 찾기 알고리즘은 차량, 핸드폰 등 이동하는 객체에 대하여 주기적으로 모니터링을 하는 위치 기반 서비스에서 연구되어 왔다. 이러한 연구들은 쿼리 포인트가 이동 객체에 비하여 매우 적을 뿐만 아니라 쿼리 포인트가 움직이지 않고 고정된 환경을 가정한다. 게임 환경에서 k-개의 이웃을 찾아야 하는 경우는 무리 짓기, 군중 시뮬레이션 및 로봇과 같이 이동 객체가 주변의 이웃 객체를 인식하여 다음 이동을 계산하여야 할 때이다. 따라서 모든 이동 객체가 쿼리 포인트가 되고, 그 결과 이동 객체와 쿼리 포인트의 수가 동일하며, 쿼리 포인트도 움직이게 된다. 본 논문에서는 이러한 게임 환경에서 기존의 위치기반 서비스에서 연구된 k-개의 이웃 찾기 알고리즘들을 적용하여 어떤 알고리즘이 어떤 조건에서 적합한지에 대한 성능을 분석한다.

Keywords

References

  1. Guttman, A., "R-trees: a dynamic index structure for spatial searching", ACM SIGMOD Rec., 14(2):47-57, 1984. https://doi.org/10.1145/971697.602266
  2. Reynolds, C. W., "Flocks, Herds, and Schools: A Distributed Behavioral Model", SIGGRAPH, 21(4), pp. 25-34, 1987. https://doi.org/10.1145/37402.37406
  3. Mat Buckland, "Programming Game AI by Example", ISBN 1556220782, Wordware Publications, 2005.
  4. Yu, X., Pu, K.Q., Koudas, N., "Monitoring k-Nearest Neighbor Queries over Moving Objects", 21st Int. Conf. on Data Engineering, p.631-642, 2005.
  5. Xiong, X., Mokbel, M.F., Aref, W.G., "SEA-CNN: Scalable Processing of Continuous K-Nearest Neighbor Queries in Spatio-Temporal Databases. 21st Int. Conf. on Data Engineering", p.643-654, 2005.
  6. Mouratidis, K., Hadjieleftheriou, M., Papadias, D., "Conceptual Partitioning: an Efficient Method for Continuous Nearest Neighbor Monitoring", Proc. ACM SIGMOD Int. Conf. on Management of Data, p.634-645, 2005.
  7. Junglas, I.A., Watson, R.T., "Location-based services", Commun. ACM, 51(3):65-69, 2008.
  8. Jae Moon Lee, "An Efficient Algorithm to Find k-Nearest Neighbors in Flocking Behavior", Information Processing Letters, 110, pp. 576-579, 2010. https://doi.org/10.1016/j.ipl.2010.04.024
  9. Jun Min Park, Jae Moon Lee, "Performance Analysis for finding continuous k-nearest neighbors of moving objects under game environments", Proc. of Korea Game Society, Spring, 2013.
  10. Jae Moon Lee, Young Mee Kwon, "A Model of Pursuing Energy of Predator in Single Predator-Prey Environment", Journal of Korea Game Society 2013 Feb; 13(1): 41-48. https://doi.org/10.7583/JKGS.2013.13.1.41
  11. Sangchul Kim and Zhong Yong Che, "A Method for Tennis Swing Recognition Using Accelerator Sensors on a Smartphone", Journal of Korea Game Society 2013 Apr; 13(2): 29-38. https://doi.org/10.7583/JKGS.2013.13.2.29