• Title/Summary/Keyword: 질량행렬

Search Result 111, Processing Time 0.019 seconds

Influence of Tip Mass and Moving Mass on Dynamic Behavior of Cantilever Pope with Double-crack (이중크랙을 가진 외팔 파이프의 동특성에 미치는 끝단질량과 이동질량의 영향)

  • Son In-Soo;Yoon Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.483-491
    • /
    • 2005
  • In this paper a dynamic behavior of a double-cracked cantilever pipe with the tip mass and a moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, the tip mass and double cracks have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. Therefore, the cracks are modelled as a rotational spring. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. We investigated about the effect of the two cracks and a tip mass on the dynamic behavior of a cantilever pipe with a moving mass.

Influence of Tip Mass and Moving Mass on Dynamic Behavior of Beam with Double-Crack (이중크랙을 가진 보의 동특성에 미치는 끝단질량과 이동질량의 영향)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.713-716
    • /
    • 2004
  • In this paper a dynamic behavior of a double-cracked cnatilver beam with a tip mass and the moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, a tip mass and double cracks have been studied on the dynamic behavior of a cantilever beam system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. ,Therefore, the cracks are modelled as a rotational spring. Totally, as a tip mass is increased, the natural frequency of cantilever beam is decreased. The position of the crack is located in front of the cantilever beam, the frequencies of a double-cracked cantilever beam presents minimum frequency.

  • PDF

Vibration Analysis of Three Layer Sandwich Beam (3층 샌드위치보의 진동해석)

  • 박철휴;김원철;양보석
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.157-170
    • /
    • 1998
  • This paper proposes a new technique to formulate the finite element model of a sandwich beam by using GHM (Golla-Hughes-McTavish) internal auxiliary coordinates to account for frequency dependence. Through the use of auxiliary coordinates, the equation of motion of undamped mass and stiffness matrix form is extended to encompass viscoelastic damping matrix. However, this methods all suffer from an increase in order of the final finite element model which is undesirable in many applications. Here we propose to combine the GHM method with model reduction techniques to remove the objection of increased model order.

  • PDF

Size Optimization of a Rod Using Frequency Response Functions of Substructures (부분 구조의 주파수 응답 함수를 이용한 봉의 치수 최적화)

  • Yoon, Hong Geun;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.905-913
    • /
    • 2017
  • In this work, a method of size optimization is proposed to maximize the natural frequency of a rod that consists of a hidden shape in one part and an exposed shape in the other. The frequency response function of a rod composed of two parts is predicted by using the frequency response functions of each of the parts instead of the shapes of the parts. The mass and stiffness matrices of the rod are obtained by using the mass and stiffness matrices of the equivalent vibration systems, which are obtained by applying the experimental modal analysis method to the frequency response functions of the parts. Through several numerical examples, the frequency response function obtained by using the proposed method is compared with that of a rod to validate the prediction method based on equivalent vibration systems. A size optimization problem is formulated for maximizing the first natural frequency of a combined rod, which is replaced with an equivalent vibration system, and a rod structure is optimized by using an optimization algorithm.

Numerical Dispersion and Its Control for 1-D Finite Element Simulation of Stress Wave Propagation (응력파 전파 수치모의를 위한 일차원 유한요소모형의 분산 특성 및 제어)

  • 이종세;유한규;윤성범
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • With an aim at eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based one-dimensional finite element model are analyzed and some dispersion control scheme are proposed in this paper The dispersion analyses are carried out for two types of mass matrix, namely the consistent and the lumped mass matrices. Based on the finding of the analyses, dispersion correction techniques are developed for both the implicit and explicit schemes. For the implicit scheme, either the weighting factor for the spatial derivatives of each time level or the lumping coefficient for mass matrix is adjusted to minimize the numerical dispersion. In the case of the explicit scheme an artificial dispersion term is introduced in the governing equation. The validity of the dispersion correction techniques proposed in this study is demonstrated by comparing the numerical solutions obtained using the Present techniques with the analytical ones.

Stability Analysis of Thin Plates on Inhomogeneous Pasternak foundation (비균질 Pasternak지반에 의해 지지된 박판의 안정 해석)

  • 이용수;김광서
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.401-411
    • /
    • 2001
  • This paper deals with the vibration analysis of the rectangular plates which are subjected to uniform in-plane stresses and supported on In-homogeneous Pasternak foundation. Two parametric foundation which Winkler foundation parameter and shear foundation parameter considered, is called by the Pasternak foundation. The values of Winkler foundation parameter of central and border zone of plate are chosen as k₁and k₂respectively, and the value of shear foundation is chosen as constant about all zone of plate. After composing global flexural stiffeness matrix, geometrical stiffeness matrix, mass matrix, and the stiffeness matrix of the Pasternak foundation, eigenvalue problems which are composed of these matrices are solved. The result shows that the shear foundation parameter must not be ignore when considering the stiffeness of foundation.

  • PDF

Model Updating in Small Structural Dynamics Model by Elimination of Mass Loading Effect of Accelerometer (가속도계 영향을 제거한 소형 구조물의 동특성 모델 개선)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Dynamic response of any small structure is always affected by the mass of the attached accelerometer. This paper predicts the natural frequencies and frequency response functions by removing the mass loading effect from the accelerometer. This mass loading is studied on a simple cantilever beams by varying the location of accelerometer. By using sensitivity analysis with iteration method, accelerometer mass and location are obtained. The predicted natural frequencies of the small cantilever beam without the accelerometer's mass show good agreement with the structural re-analysis.

Plate Bending Finite Element Model Using Higher-order Inplane Displacement Profile (면방향(面方向) 고차변위(高次變位)를 고려(考慮)한 평판(平板) 유한요소(有限要素)모델)

  • Shin, Hyun Mook;Shin, Young Shik;Kim, Hyeong Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 1987
  • An efficient plate bending finite element has been developed using higher-order inplane displacement profiles of the plate. The 6-noded, 21-d.o.f. triangular element including shear deformation effect has been derived from the plate-like continuum by the Galerkin's weighted residual method. Square plate examples were tested with selected element meshes and several aspect ratios for their static behavior under uniformly distributed load. The result of the example tests indicated consistently good performance of the present higher-order plate bending element in comparison with the thin and thick plate solution and other existing finite element solutions.

  • PDF

Study on The Stiffness Locking Phenomenon and Eigen Problem in Mindlin Plate (Mindlin 판의 강성 과잉 현상과 고유치에 관한 연구)

  • 김용우;박춘수;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.445-454
    • /
    • 1991
  • In this thesis, Mindlin plate element with nine nodes and three degrees-of-freedom at each node is formulated and is employed in eigen-analysis of a rectangular plates in order to alleviate locking phenomenon of eigenvalues. Eigenvalues and their modes may be locked if conventional $C_{0}$-isoparametric element is used. In order to reduce stiffness locking phenomenon, two methods (1, the general reduced and selective integration, 2, the new element that use of modified shape function) are studied. Additionally in order to reduce the error due to mass matrix, two mass matrixes (1, Gauss-Legendre mass matrix, 2, Gauss-Lobatto mass matrix) are considered. The results of eigen-analysis for two models (the square plate with all edges simply-supported and all edges built-in), computed by two methods for stiffness matrix and by two mass matrixes are compared with theoretical solutions and conventional numerical solutions. These comparisons show that the performance of the two methods with Gauss-Lobatto mass matrix is better than that of the conventional plate element. But, by considering the spurious rigid body motions, the element which employs modified shape function with full integration and Gauss-Lobatto mass matrix can elevate the accuracy and convergence of numerical solutions.

Dynamic Nonlinear Analysis of Ocean Cables Subjected to Wave Forces (파력을 받는 해양케이블의 동적 비선형 해석)

  • 김문영;김남일;이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-188
    • /
    • 1999
  • Kim et al.(I999) presented a non-linear finite element formulation of spatial ocean cables using multiple noded cable elements. The initial equilibrium state of ocean cables subjected to self-weights, support motions, and current forces was determined using the load incremental method and free vibration analysis were performed considering added mass, In this paper, the methods to generate regular and irregular waves and calculate wave forces due to these waves are discussed and challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to wave loadings.

  • PDF