• Title/Summary/Keyword: 진동 모델링

Search Result 769, Processing Time 0.023 seconds

Modeling of Military Vehicle Suspension System Featuring Disc Spring and MR Valve (접시 스프링과 MR Valve를 적용한 군용차량 현수장치의 모델링)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.979-986
    • /
    • 2009
  • This paper presents a dynamic modeling of a military vehicle suspension featuring disc spring and MR valve. Firstly, the dynamic model of the disc spring is established with respect to the load and pressure. The nonlinear behavior of the spring is incorporated with the model. Secondly, the dynamic model of the MR valve is derived by considering the pressure drop due to the viscosity and yield stress of MR fluid. The governing characteristics of the proposed suspension system are then investigated by presenting the field-dependent pressure drop of the MR valve and spring force of the gas spring.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc-Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.659-666
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological(ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

Nonlinear Modeling of Dynamic AFM Using Proper Orthogonal Modes (적합직교모드를 이용한 동적모드 AFM 의 비선형 모델링)

  • Hong, Sang-Hyuk;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.379-382
    • /
    • 2007
  • The proper orthogonal decomposition(POD) is used to the modal analysis of microcantilever of dynamic mode atomic force microscopy(AFM). The proper orthogonal modes(POM) are extracted from vibrating signals of microcantilever when it resonates and taps the sample. The POMs resemble the linear normal modes(LNM) of cantilever vibrating at each resonance frequency. Some of POMs in tapping microcantilever show quite different shapes from the POMs of the resonating microcantilever. Also this POMs can be applied to model for the complex nonlinear behavior of the dynamic mode AFM microcantilevers.

  • PDF

Modelling of Railway Tracks for Wave Propagation along Railway Tracks at High Frequencies (철로를 따라 전파되는 파동 해석을 위한 고주파수 대역 철로 모델링)

  • Ryue, Jung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • It was reported recently that railpads can be included as a continuous elastic support of the rail and the model was justified from experiments. In general, however, railpads are installed discretely on sleepers with a regular span. The effect of the discrete railpad was not clearly examined so far in such a high frequency range. In this paper, the effect of the railpads in track modelling for high frequencies is investigated by means of the finite element analysis. To do that, the railpads are regarded as 'a continuous elastic support' and 'a discrete elastic support' in this paper. The dispersion relations and decaying features are predicted and compared between the two models up to 80 kHz.

Dynamic Modeling of One-Dimensional Structural Joints (1차원 구조물 결합부의 동적모델링)

  • 강태호;김주홍;이우식;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.413-418
    • /
    • 1998
  • In this paper, a dynamic modeling approach is introduced to identify the dynamic characteristics of the structural/mechanical joints within an one-dimensional structure. A structural joint is represented by the four-pole parameters and the four-pole parameters are determined from the measured frequency response functions by using the spectral element method. As the illustrative examples, a cantilevered beam and a clamped-clamped beam, each consists of two beams connected by a bolted joint, are investigated to evaluate the present modeling approach. It is found that the dynamic responses predicted by using the identified four-pole parameters for the bolted joint are well agreed with the dynamic responses measured up to high frequency.

  • PDF

Kinematic and Dnamic Modeling and Analysis for Jerk Simulation of the Excavator (굴삭기의 저크현상 시뮬레이션을 위한 기구동역학 모델링 및 해석)

  • 임홍재;성상준;이규령;유영석;최준업;이동욱;이승구
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.40-44
    • /
    • 1998
  • In this paper, a kinematic and dynamic model for an excavator is presented. A graphic user interface program for kinematic-dynamic analysis for the excavator is developed. To predict the stiffness and damping properties of the joint between the vehicle and the track, a parameter study is executed. Using the predicted joint stiffness and damping, the jerk simulation for the excavator is reproduced. Simulation results are compared with the test results to confirm the validity of the simulation model.

  • PDF

Design and Analysis of Automotive Engine Mount (자동차 엔진마운트의 설계해석)

  • Cho, Jae-Ung;Kim, Yeong-In;Kim, Sei-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.673-675
    • /
    • 2011
  • 고무는 소재의 탄성 회복 능력과 감쇄 능력, 수밀성의 우수성으로 인해 여러 기계산업의 부품으로 사용되어 지고, 자동차 부품으로는 마운트와 범퍼 등의 충격해소를 위하여 설계되어지고 있다. 본 논문에서는 승차감에 영향을 주는 내부 소음 및 진동의 원인인 엔진의 떨림현상을 감쇄시키기 위한 부품인, 엔진마운트의 고무 모형을 CATIA 프로그램을 사용하여 모델링하였고, ANSYS 12.0 프로그램으로 진동과 하중을 주어 변화량을 측정하여 상용차에 맞는 엔진마운트의 최적설계를 방향을 제시하였다.

  • PDF

A study on Modeling and Experiments of an Eddy Current Damping (와전류감쇠의 모델링 및 특성 실험에 관한 연구)

  • Park, Jung-Sam;Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.250-254
    • /
    • 2008
  • Eddy currents are induced when a nonmagnetic conductive material is moving subjected to the magnetic field due to a permanent magnet. These currents circulates in the conductive material and are dissipated, causing a repulsive force between the magnet and the conductor. Using this concept, the eddy current damping can be used as a viscous damping. The present study investigates the characteristics of a magnetic damping analytically and experimentally. The theoretical model of a eddy current damping is developed from electromagnetics and is verified from experiments. The drop test of a magnet in the cooper tube shows that the present model can accurately predict the damping force. Additionally, the dynamic test of a eddy current damping is carried to verify the present model.

  • PDF

Simulation for a metal based low frequency energy harvester (메탈 기반의 낮은 공진주파수 대역을 갖는 에너지 하베스터 시뮬레이션)

  • Lee, Jai-Hyuk;Cha, Doo-Yeol;Chang, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.210-210
    • /
    • 2010
  • 에너지 하베스트 기술은 자연의 빛에너지, 휴대용 기기 탑재/부착장치의 미세 진동에너지, 걷거나 뛰는 인간의 신체활동으로 인한 소산에너지 등을 흡수하여 전기에너지로 변환, 전자기기의 전력으로 사용하는 재생형 에너지원이다. 본 논문에서는 그 중 주변 환경에서 에너지를 끌어 쓸 수 있는 기술 중 압전 효과 방식을 이용한 진동 형태의 에너지 하베스트 기술을 활용하여 설계하고 FEM simulation을 통해 분석해보았다. 압전 물질로는 PZT를 사용하고 메탈기반의 캔틸레버로는 구리를 사용하여 크기를 길이, 넓이, 폭 각각 $6{\times}4{\times}0.025mm^3$으로 모델링하여 444Hz의 공진주파수에서 응력이 $2.68e^{+5}Pa$ 발생하는 결과를 얻었다. 그 결과 $d_{33}$ 모드의 전극형태에서 전압을 2.56V 얻을 수 있음을 추론할 수 있었다.

  • PDF

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.438-443
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological (ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

  • PDF