• Title/Summary/Keyword: 진동 모델링

Search Result 769, Processing Time 0.026 seconds

A Study on Modeling for the Magnetic Bearing System by Numerical Analysis (수치 해석을 통한 자기 베어링 시스템의 모델링에 관한 연구)

  • Shim, S.H.;Choi, M.S.;Kim, C.H.;Moon, D.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.53-60
    • /
    • 2001
  • This paper considers a modeling for the MIMO magnetic bearing system. The rotor is flexible and has a complex shape. To obtain the nominal plant transfer functions, we perform a numerical analysis by using the finite element method(F.E.M.) for the rotor's dynamics, and make a nominal model by reducing the modes from the results. And, we have experimented on the frequency response by a closed-loop identification method, and compared it with the simulation's result on the closed-loop control system.

  • PDF

Dynamic Equivalent Continuum Modeling of a Box-Beam Typed Wing (Box-Beam 형상 날개의 동적 등가연속체 모델링에 관한 연구)

  • 이우식;김영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2704-2710
    • /
    • 1993
  • A simple and straightforward method is introduced for developing continuum beam-rod model of a box-beam typed aircraft wing with composite layered skin based on "energy equivalence." The equivalent continuum structral properties are obtained from the direct comparison of the reduced stiffness and mass matrices for box-beam typed wing with those for continuum beam-rod model. The stiffness and mass matrices are all represented in terms of the continuum degrees-of freedom defined in this paper. The finite-element method. The advantage of the present continuum method is to give every continuum structural properties including all possible coupling terms which represent the couplings between different deformations. To evaluate the continuum method developed in this paper, free vibration analyses for both continuum beam-rod and box-beam are conducted. Numerical tests show that the present continuum method gives very reliable structural and dynamic properties compared to the results by the conventional finite-element analysis. analysis.

슬래브의 유연성을 고려한 집중질량 모델링방법의 개선에 관한 연구

  • 권영철;이상훈;김종수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.346-351
    • /
    • 1996
  • 현재 원전의 내진해석 절차에는 수직방향의 동적해석모델을 집중질량-보요소 모델로 나타내고 있으나, 층슬래브이 동적유연성을 합리적으로 고려할 수 있는 기준이 마련되어 있지 않다. 본 연구에서는 벽체로 지지된 4변고정 슬래브를 유한요소모델 및 집중질량모델로 이상화한 후 고유치해석 및 시간이력해석을 수행한 결과, 현재 층슬래브의 수직응답을 얻기 위해 통상적으로 사용되는 일련의 단자유도계 모델은 이에 상응하는 유한요소모델의 각 모드에 대한 평균응답밖에 주지 못함을 확인하였고, 각 모드 층슬래브의 최대응답을 얻기 위해서는 각 고유진동수가 최소한 이자유도계로 모델링되어야 하며, 이때 이자유도계에 분배할 질량 및 연결보의 강성크기가 각각 1:5와 1:6일때 잘 일치함을 확인하였다. 또한 이렇게 결정된 모델링 방법은 실제 전단벽 구조물의 해석을 통해 그 적용성이 입증되었다.

  • PDF

Modelling and Sensitivity Analysis for the Performance Improvement of a Spin Coater (스핀 코너 성능향상을 위한 모델링 및 민감도 해석)

  • 권태종;채호철;한창수;정진태;안강호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.96-102
    • /
    • 2000
  • Spinning mechanism is generally used in coasting process on grass plates. Rebounding PR(Photo Resist) which leads to occur inferiority of coating process is caused by vibrational energy of whole coating system. In this study, the sensitivity analysis is performed to analyze and reduce vibrational terms in the spin coating system. The sensitivity analysis is bared on the numerical expression of this system. By the bond graph method. power flow of each system is represented by some basic bond graph elements. Any energy domain system is modeled using the unified elements. The modelled spin coater system is verified with power spectrum data measured by FFT analyzer. As the results of verifying model parameters and sensitivity analysis, principal factors causing vibration phenomenon are mentioned. A study on vibration method in the spin coating system is discussed.

  • PDF

Boundary/Finite Element Analysis of the Seismic Wave Amplifications Due to Inhomogeneous Alluvial Deposits (비균질 퇴적층으로 인한 지진파 증폭의 경계/유한요소 해석)

  • 김효건;손영호;김종주;최광규
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.591-597
    • /
    • 1999
  • 본 연구에서는 비 균질 퇴적층으로 인한 지진파의 증폭에 대한 경계/유한요소 해석을 수행하였다. 수치해석을 위해, 비 균질 퇴적층은 8절점 등 매개 변수 유한요소 사용하여 모델링하였고, 그 주위의 균질 반무한 지반은 3절점 등매개 변수 경계요소를 사용하여 모델링하였다. 경계요소와 유한요소의 접촉면에서, 표면 력의 평형조건과 변위의 적합 조건에 의해 두 개의 요소를 결합하는 알고리듬을 개발하였다. 수치해석의 영향인자로서 SH파, P파와 SV파의 입사각, 무 차원 진동수 그리고 반무한 지반과 퇴적층사이의 전단 파 속도 비와 질량밀도 비를 고려하였다.

  • PDF

Implementation of Real-Time Bilateral Control of Fuzzy Robot Hand using Analytic Hierachy Process (계층적 분석방법을 이용한 실시간 퍼지로봇핸드의 양방향 제어의 구현)

  • Jin, Hyun-Soo;Hong, Yoo-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.525-532
    • /
    • 2004
  • Telemanipulator is distingushed from industrial robot by iterating same specified work. Manipulator operator is included in control loop for controlling the telemanipulator because he decide directly during the work and order controllabily. We implement fuzzy controller for reducing the modelling error of telemanipulator which depend on the PID controller. But position-force control method of bidirectional control impose unsafety of vibiration and Analytic Hierchy method can stabilize for reducing nonlinear modelling error by expert operator because of transformation empirical control rule to linear model.

Dynamic Modeling of a Satellite with Solar Array Flexible Modes (태양전지판의 유연 모드를 고려한 위성의 동적 모델링)

  • Kim, Dae-Kwan;Park, Young-Woong;Park, Keun-Joo;Yang, Koon-Ho;Yong, Ki-Lyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.837-842
    • /
    • 2009
  • The efficient dynamic modeling of a satellite with flexible solar arrays is established by using the component mode synthesis technique. A flexible satellite model can be defined as the assembly of two sub-structures, central body and solar array. The reduced models of each substructure, which are expressed in each local frame, are coupled with respect to the satellite reference frame. The dynamic modeling method is applied to the numerical example of a satellite with a single solar array, and is verified by investigating the transfer function results with considering the solar array rotation.

A Study about the Modelling of Thermoelectric Cooler and the Thermal Transfer Analysis (열전 냉각기의 모델링 및 열전달 해석에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1291-1296
    • /
    • 2014
  • The thermoelectric cooler is receiving great interest because of advantages such as the precise temperature control capability, the compact and lightweight cooler, and the mechanical vibrationless structure which enhances the reliability compared with the existing vapor compression cooler. However, it is not easy to design the optimal thermoelectric cooler which appropriate to the application because the thermal analysis should be necessary required. Accordingly, this paper studies the methodology of the modelling, sizing and thermal analysis of the thermoelectric cooler using SINDA/FLUINT analysis tool.

A Study of Robust Vibration Control for a Multi-Layer Structure (다층상구조물의 강인 진동제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Jung, Hae-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1212-1219
    • /
    • 2009
  • In this paper, a state feedback gain controller using linear matrix inequality(LMI) for the multi-objective synthesis is designed, in the multi-layer structure with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Selection of Nodes and Modes for Reduced Modeling of Substructures (부분구조물의 축약 모델링을 위한 절점 및 모드의 선정)

  • Hwang, Woo Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.232-237
    • /
    • 2015
  • Complex dynamic systems are composed of several subsystems. Each subsystems affect the dynamics of other subsystems since they are connected to each other in the whole system. Theoretically, we can derive the exact mass and stiffness matrix of a system if we have the natural frequencies and mode shapes of that system. In real situation, the modal parameters for the higher modes are not available and the number of degree of freedom concerned are not so high. This paper shows a simple method to derive the mass and stiffness matrix of a system considering the connecting points of subsystems. Since the accuracy of reconstructed structure depends on the selection of node and mode, the rule for selection of node and mode are derived from the numerical examples.