• Title/Summary/Keyword: 진공 원자층 증착법

Search Result 68, Processing Time 0.043 seconds

Atomic Layer Depositied Tungsten Nitride Thin Films as Diffusion Barrier for Copper Metallization

  • Hwang, Yeong-Hyeon;Lee, In-Hwan;Jo, Byeong-Cheol;Kim, Yeong-Hwan;Jo, Won-Ju;Kim, Yong-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.145-145
    • /
    • 2012
  • 반도체 집적회로의 집적도가 증가함에 따라 RC delay가 증가하며, 금속 배선의 spiking, electromigration 등의 문제로 인해 기존의 알루미늄 금속을 대체하기 위하여 구리를 배선재료로 사용하게 되었다. 하지만 구리는 실리콘 및 산화물 내에서 매우 빠른 확산도를 가지고 있으므로, 구리의 확산을 막아 줄 확산방지막이 필요로 하다. 이러한 확산방지막의 증착은, 소자의 크기가 작아짐에 따라 via/contact과 같은 고단차 구조에도 적용이 가능하도록 기존의 sputtering 증착 방법에서 이를 개선한 collimated sputter, long-throw sputter, ion-metal plasma 등의 방법으로 물리적인 증착법이 지속되어 왔지만, 근본적인 증착방법을 바꾸지 않는 한 한계에 도달하게 될 것이다. 원자층 증착법(ALD)은 CVD 증착법의 하나로, 소스와 반응물질을 주입하는 시간을 분리함으로써 증착하고자 하는 표면에서의 반응을 유도하여 원자층 단위로 원하는 박막을 얻을 수 있는 증착방법이다. 이를 이용하여 물리적 증기 증착법(PVD)보다 우수한 단차피복성과 함께 정교하게 증착두께를 컨트롤을 할 수 있다. 본 연구에서는 이러한 원자층 증착법을 이용하여 구리 배선을 위한 확산방지막으로 텅스텐질화막을 형성하였다. 텅스텐 질화막을 형성하기 위하여 금속-유기물 전구체와 함께 할라이드 계열인 WF6를 텅스텐 소스로 이용하였으며, 이에 대한 원자층 증착방법으로 이루어진 박막의 물성을 비교 평가하여 분석하였다.

  • PDF

유기소자의 Encapsulation 박막으로 사용된 원자층 및 분자층 증착 $Al_2O_3$/Alucone 박막의 특성 연구

  • Park, Min-U;Yeo, Dong-Hyeon;Won, Beom-Hui;Lee, Ji-Hye;Lee, Chae-Min;Ha, Myeong-Hun;Jeong, Dong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.443-443
    • /
    • 2013
  • 유기광전자소자는 아주 얇은 두께로 제작 가능하여 휘어지는 소자를 구현할 수 있다. 이런 장점 때문에 플렉서블 디스플레이, 플렉서블 태양전지 구현에 가장 적합한 소자로 각광받고 있다. 하지만 수분이나 산소에 의한 소자내의 유기물과 금속의 열화로 소자의 수명이 줄어들기 때문에 산소 및 수분 침투를 방지하는 봉지기술(encapsulation)이 필요하다. 본 연구는 원자층 증착법을 이용한 무기박막층과 분자층 증착법을 이용한 폴리머박막의 적층구조를 이용하여 유기소자에 적용할 수 있는 수분 투과 방지막을 제작하였다. 무기박막층으로는 trymethylaluminum (TMA)과 $H_2O$를 사용하여 $Al_2O_3$를 제작하였고 폴리머층으로는 TMA와 ethylene glycol를 사용하여 alucone박막을 제작하였다. 폴리머층으로 사용된 alucone박막의 X-선 광전자 분광 스펙트럼은 대기중 수분과 산소에 의한 화학결합구조의 변화를 보였지만, $Al_2O_3$와 적층구조로 사용되었을 때, 배리어특성을 증가시키고 휘어짐에 따른 보호막의 열화현상을 줄여줄 수 있는 것을 Ca-test를 통해 확인하였다. 이러한 현상은 alucone막을 적층함으로써 $Al_2O_3$를 침투한 소량의 수분과 산소가, alucone박막을 지나면서 다음 $Al_2O_3$ 층으로 침투하기 전까지의 경로를 늘려주기 때문이라 사료된다.

  • PDF

Ca-test에 의한 유기발광소자 봉지용 분자층 증착 Alucone 박막의 투과 방지 특성

  • O, Seung-Sik;Park, Min-U;Park, Geun-Hui;Yeo, Dong-Hyeon;Jeong, Dong-Geun;Park, Jin-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.401-401
    • /
    • 2012
  • 유기발광소자는 유연 소자로의 적용, 자체 발광 등의 장점으로 차세대 디스플레이로서 각광받고 있다. 하지만 유기발광소자는 유기물을 발광층으로 하고 있기 때문에 수분에 취약하다는 단점이 있다. 그래서 봉지 기술(encapsulation)을 필요로 한다. 널리 알려진 방법으로는 유리로 소자를 감싸고 내부에 흡습제를 충진하여 수분 투습을 줄일 수 있다. 하지만 위 기술을 사용할 경우 유기발광소자의 장점인 유연 소자의 적용이 어렵다. 따라서 박막 봉지 기술을 이용하면 보다 얇은 두께의 소자 제작이 가능하고 유연 소자의 적용 역시 가능해진다. 박막 코팅을 이용한 봉지 기술 중 화학적 증착법(Chemical Vapor Deposition, CVD)이나 물리적 증착법(Physical Vapor Deposition, PVD)을 이용하는 방법이 널리 알려져 있지만 원자층 증착법(Atomic Layer Deposition, ALD)을 이용하면 보다 낮은 두께의 치밀한 박막을 제작 할 수 있다. 본 연구는 원자층 증착법을 응용한 분자층 증착법(Molecular Layer Deposition, MLD)을 이용하여 Trimethylaluminum과 Ethylene glycol을 순차적으로 주입함으로써 Alucone 유기 박막을 제작하고 유기발광소자의 봉지 기술로의 적용을 위해 투과 방지막 특성에 관하여 분석했다. 박막 봉지 기술로서 적용하기 위해 제작된 투과 방지막은 원자층 증착법으로 Al2O3무기 박막을 제작하고 분자층 증착법으로 Alucone 박막을 순차적으로 증착하였다. 이를 Ca를 이용하여 전도도를 측정하고, 투습도를 계산하여 투과 방지막 특성을 분석하였다. Alucone 박막은 우수한 투과 방지막 특성을 가지지는 못하지만 적층 구조로 제작함으로써 두 쌍의 Alucone/Al2O3일때, $6.07{\times}10^{-2}g/m^2day$의 투습도를 보여주고 있다. Alucone 박막의 존재는 수분이나 산소의 투과 경로 길이를 늘려줌으로써 Alucone/Al2O3 박막의 투과방지 특성이 향상되는 것으로 사료된다.

  • PDF

진공 원자층 증착법을 적용한 염료감응형 태양전지의 효율 향상 연구

  • Sin, Jin-Ho;Gang, Sang-U;Kim, Jin-Tae;Go, Mun-Gyu;Hwang, Taek-Seong;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.175-175
    • /
    • 2011
  • 최근 석유 자원의 고갈로 인하여 요구되는 대체 에너지 개발의 필요성이 대두되고 있다. 그중 태양에너지는 지구의 생명체가 살아가는 에너지의 근원으로서 매초 800~1,000 W에 달하는 에너지양으로 볼 때 태양은 인류가 가장 풍부하게 활용할 수 있는 에너지원이다. 태양에너지를 이용한 염료감응형 태양전지(Dye-Sensitized Solar Cells, DSSCs)는 제조원가를 낮출 수 있고, 유리 전극을 이용한 투명한 태양전지를 제조할 수 있어 건물의 유리창등으로 응용할 수 있는 장점이있다. 이러한 광변환 효율을 증가시키기 위한 방법으로 전기방사 TiO2 Nanofiber를 기계적으로 갈아서 제조한 TiO2 Nanorod 와 TiO2 Nanoparticle를 섞어서 만든 paste를 이용하여 넓은 표면적과 빠른 전자수송도를 갖게 하였고, 흡착된 염료에서 발생되는 광전자가 전해질의 산화, 환원되는 요오드 이온(I-/I3-)과의 재결합(recombination)현상을 TiO2 전극 위에 높은 밴드갭(band-gap)을 가지는 Al2O3 박막을 TriMethylAluminium (TMA) 전구체를 이용한 원자층 증착(Atomic Layer Deposition, ALD) 공정을 사용하여 진공증착 통해 광전변환효율이 떨어지는 현상을 방지하여 효율을 높였다.

  • PDF

다공성 금속 합금 폼 표면의 향상된 촉매 분산을 위해 원자층 증착법을 이용한 inter-layer의 도입

  • Lee, Yu-Jin;Gu, Bon-Yul;Baek, Seong-Ho;Park, Man-Ho;An, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.97-97
    • /
    • 2015
  • 전 세계적으로 화석연료의 고갈 및 환경오염 문제를 해결하기 위해 신재생에너지에 대한 관심이 급증하고 있다. 이러한 신재생에너지에는 수소 에너지, 자연 에너지(태양열, 지열 등), 바이오 매스 에너지 등이 포함된다. 이 중 수소 에너지는 지구상에 풍부하게 존재하고 있는 물과 탄화수소로부터 얻어지며, 연소 시에도 다시 물을 형성하여 오염 물질을 배출하지 않는 차세대 무공해 에너지원으로써 주목을 받고 있다. 수소 제조를 위한 공정에는 수증기 개질 공정(steam reforming), 부분 산화(partial oxidation) 및 자열개질(autothermal reforming) 등이 있으며 실제로 생산되는 대부분의 수소는 탄소/수소비(1:4)가 높은 메탄($CH_4$) 가스를 이용한 메탄 수증기 개질 공정(steam methane reforming)을 통하여 제조된다. 이 때 수소 제조의 고효율화 및 저비용화를 위해서는 반응물에 대한 높은 선택도, 고활성도 및 높은 안정성을 갖는 촉매가 반드시 필요하며, 대표적으로 Ni, Pt, Ru 등이 보고되고 있다. 이러한 촉매들은 대부분 세라믹 pellet 형태로 제작되어 왔으나 열전도도가 낮고 물리적 충격에 취약하다는 단점이 존재한다. 따라서 우리는 이러한 단점을 극복하고, 촉매의 활성을 높이기 위하여 다공성 금속 합금 폼을 촉매 지지체로 도입하였다. 또한, 다공성 금속 합금 폼 표면에 촉매의 분산 및 안정성을 향상시키기 위해 지지체와 촉매 사이에 원자층 증착법을 이용하여 inter-layer를 도입하였다. 이들의 구조, 형태, 및 표면의 화학적 상태는 주사전자현미경, EDS (energy dispersive spectroscopy)가 탑재된 주사전자현미경, X-선 회절, 및 X-선 광전자 분광법을 이용하여 규명하였다. 더하여 정전압-전류 측정법 및 유도 결합 플라즈마 분광 분석기을 이용하여 전기 화학 반응을 유도하고, 반응 후 전해질의 성분분석을 통해 촉매와 지지체 간의 안정성을 평가하였다. 따라서 본 결과들은 한국진공학회 하계정기학술대회를 통해 좀 더 자세히 논의될 것이다.

  • PDF