• Title/Summary/Keyword: 직조 카고메

Search Result 18, Processing Time 0.025 seconds

Design and Construction of a Loom for Obtaining Ultra-Light Metal Structure (초경량 금속 구조재 직조장치의 설계 및 제작)

  • Kim, Pan-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1235-1240
    • /
    • 2010
  • Wire-woven Bulk Kagome (WBK) is fabricated by assembling helically formed wires in six directions. To date, WBK samples have been assembled manually. For industrial application, the assembly process must be automated. Furthermore, if WBK is to be fabricated using flexible wires that cannot maintain their helical shape during fabrication, a specialized automatic machine, i.e., a loom needs to be developed. In this work, we designed and constructed a loom for fabricating WBKs using flexible wires. This loom is operated by one rotation of the upper plate, two translations of the insertion device, and insertion of wires. So-called "comb devices" are placed between multiple layers of Kagome nets to prevent the wires that are already in place from getting entangled with those that are being inserted. This loom can be also used to fabricate semi-WBKs composed of helically formed wires and rigid straight wires.

Finite Element Simulation of Behavior of WBK Cored Sandwich Panels Subjected to Bending Loads (굽힘하중 하의 벌크형 와이어 직조 카고메 트러스 중간재를 갖는 샌드위치 판재의 기계적 거동)

  • Choi, Ji-Eun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.353-359
    • /
    • 2009
  • Wire-woven Bulk Kagome (WBK) is a new truss type cellular metal fabricated by systematic assembling of helical wires in six directions. In this work, the experiments of mechanical behaviors of WBK cored sandwich panels subjected to bending load were performed and the results were compared with those by the corresponding analytic solutions. And also, finite element simulations were performed to validate the optimal design according to the analytic solutions. It is found the sandwich panel with WBK core performed excellently in terms of energy absorption and deformation stability after the peak point as well as the load capacity.

An Optimal Design of Sandwich Panels with Wire-woven Bulk Kagome Cores (와이어 직조 카고메 다공질 금속을 심재로 갖는 샌드위치 판재의 최적 설계)

  • Lee, Yong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.782-787
    • /
    • 2008
  • First, the effect of the geometry such as the curved shape of the struts composing the truss structure of WBK is elaborated. Then, analytic solutions for the material properties of WBK and the maximum loads of a WBK-cored sandwich panel under bending are derived. A design optimization with the face sheet thickness and the core height selected as the design variables is presented for given slenderness ratios of the WBK core. Unless the face sheet thickness is limited, the optimal design to give the maximum load per weight is always found at a confluence of three failure modes, namely, face sheet yielding, indentation plastic, and core shear modeB plastic.

Geometry of Wire-wounded Bulk Kagome Structure (와이어 직조 카고메의 기하학)

  • Kim, Heon-Soo;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1410-1415
    • /
    • 2007
  • Recently introduced WBK(Wire-wounded Bulk Kagome) shows relatively superior mechanical properties compared to other types of PCM. WBK is fabricated by assembling helical wires in 6 directions. Wire being a helix, the wire's geometric properties like pitch and helical radius shows certain geometric characteristics which can play some critical role in setting up an automatic fabrication process. In this study, geometry of WBK is modeled by various transformations of a piece of helical wire and the characteristics of the geometry of an element of WBK truss are discussed. In addition, the roles of pitch and helical radius of wire in optimizing the assembling process are described and the derivation of criteria is attempted to decide proper helical radius which would maintain minimal interference between wires at the crossings.

  • PDF

Effect of Strut Waviness on Structural Performance of Wire-Woven Bulk Kagome Cores (WBK 의 구조적 특성에 대한 와이어 굴곡 효과)

  • Lee, Ki-Won;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1099-1103
    • /
    • 2011
  • Since the mechanical strength and stiffness of wire-woven bulk Kagome (BK) have been theoretically estimated by assuming that WBK is composed of straight struts, the analytical solutions occasionally give substantial errors as compared with the experimental results. The struts of WBK are helically formed, which results in errors in the estimations In this study, for accurately predicting the mechanical properties of WBK, the effects of waviness and brazed part are taken into account for estimating the strength and stiffness of WBK. The results are compared with the measured experimental results and the results estimated by a finite element analysis performed on a unit cell under periodic boundary conditions (PBC).

Pilot Study on the Shear Strengthening Effect of Concrete Members Reinforced by Kagome Truss (카고메 트러스로 보강한 콘크리트 부재의 전단 보강효과에 관한 기초 연구)

  • Kim, Woo;Kang, Ki-Ju;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.237-244
    • /
    • 2012
  • There is mounting recognition among concrete researchers that fiber reinforcement makes up for the inherent weakness in resisting tensile force of structural concrete. In practice of application of the fiber to concrete, however, several problems still remain to solve for assuring a uniform mix quality. The Kagome truss that is widely used in mechanical engineering field seems to be a good replacement for the steel fiber. This paper presents the test results of a pilot study for the concrete members reinforced by Kagome truss which is a periodic cellular metal of wire-woven. Three types of Kagome truss bulk were prefabricated and filled with normal concrete to make small-scaled test beams. The beams reinforced by a normal steel stirrups were also tested up to failure to compare the behavioral results. From the results obtained, it is appeared that comparing with beams reinforced by normal stirrups, the beams reinforced by Kagome truss showed better performance in load carrying capacity as well as ductility. Therefore, the Kagome truss is proved to be a good web shear reinforcing material.

The Compressive Characteristics of The Convex Type Wire-woven Bulk Kagome Truss PCM (볼록형 와이어 직조 카고메 트러스 PCM의 압축특성평가)

  • Li, Ming-Zhen;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.138-143
    • /
    • 2008
  • Recently, a new periodic cellular metal(PCM) named as Wire wove Bulk Kagome(WBK) was introduced. Based on the shape of tetrahedra composing a WBK, WBKs are classified into two types, namely, concave and convex type. They are easily differentiated by changing the assembling sequence. The effect of geometrical parameters such as the wire diameter, strut length and number of layers on the compressive behavior of concave type WBK has already been investigated. In this work, the similar works were performed with the convex type WBKs. It was shown that the compressive strength of the convex type WBK was quite similar to that of the concave type. The compressive strengths of convex type specimens also depend on the slenderness ratio, but a little different from those of concave type specimens in the detailed behavior. And densification occurs earlier than the concave type WBK.

  • PDF

A Wire-Woven Kagome Transformed to have a Negative Poisson's Ratio (음의 푸아송비를 갖도록 변환된 와이어 직조 Kagome)

  • Kang, Dae Seung;Han, Seung Chul;Park, Jong Woo;Nguyen, Dang Ban;Kang, Kiju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.827-833
    • /
    • 2016
  • Wire-woven Kagome is a kind of Periodic Cellular Metal, which is known to have high strength, stiffness for its weight, and potential for mass production. In this work, we developed a new structure that mimics ${\alpha}$-cristobalite. First, an ordinary wire-woven Kagome was fabricated using metallic wires, and the tetrahedral cells were then filled with metal balls and epoxy. The wire-woven Kagome was transformed to have a negative Poisson's ratio by carrying out a specified amount of initial deformation. The fabrication possibility and kinematic behavior were checked by using FEA simulation. Finally, the mechanical properties were measured using compressive tests.

Fabrication of an Ultralow Density Material Based on Wire-Weaving (와이어 직조에 기반한 극저밀도 재료의 제조법)

  • Choi, Jung Myung;Gang, Liu;Kang, Kiju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.737-744
    • /
    • 2017
  • A new ultralow density material (ULDM) named Shellular was recently introduced. Shellular has a periodic cellular structure with smooth-curved shells. The template for the first Shellular was fabricated using lithography and its shape was similar to the P-surface, a type of triply periodic minimal surface (TPMS). In this paper, a new fabrication method of Shellular with D-surface, named W-Shellular, is described. W-Shellular is fabricated based on weaving of polymer wires. The compressive properties are evaluated by experiments and analysis in comparison with the previous ULDMs.

Mechanical Behaviors under Compression in Wire-woven Bulk Kagome Truss PCMs (II) - Effects of Geometric and Material Imperfections - (벌크형 와이어직조 카고메 트러스 PCM의 압축거동 (II) - 결함의 영향 -)

  • Hyun, Sang-Il;Choi, Ji-Eun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.792-799
    • /
    • 2007
  • A newly developed cellular metal based on kagome lattice is an ideal candidate for multifunctional materials achieving various optimal properties. Intensive efforts have been devoted to develop efficient techniques for mass production due to its wide potential applications. Since a variety of imperfections would be inevitably included in the realistic fabrication processes, it is highly important to examine the correlation between the imperfections and material strengths. Previous performance tests were mostly done by numerical simulations such as finite element method (FEM), but only for perfect structures without any imperfection. In this paper, we developed an efficient numerical framework using nonlinear random network analysis (RNA) to verify how the statistical imperfections (geometrical and material property) contribute to the performance of general truss structures. The numerical results for kagome truss structures are compared with experimental measurements on 3-layerd WBK (wire-woven bulk kagome). The mechanical strength of the kagome structures is shown relatively stable with the Gaussian types of imperfections.