• Title/Summary/Keyword: 직접 접촉식

Search Result 137, Processing Time 0.021 seconds

Research on Overheating Prediction Methods for Truck Braking Systems (화물차의 제동장치에서 발생하는 과열 예측방안 연구)

  • Beom Seok Chae;Young Jin Kim;Hyung Jin Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.54-61
    • /
    • 2024
  • Recently, due to the increase in domestic and international online e-commerce platforms and the increase in container traffic at domestic ports, the operating ratio of large trucks has increased, and the number of truck fires is continuously increasing. In particular, spontaneous combustion is the most common cause of truck fires. Various academic approaches have been attempted to prevent truck fires, but due to the lack of research on the spontaneous tire ignition phenomenon that occurs during braking, this research directly designed and manufactured an experimental device to establish an environment similar to the braking system of a truck. A non-contact temperature sensor was installed on the brake device of the experimental device to collect temperature data generated from the brake device. Based on the data collected from the temperature sensor of the brake device and the temperature sensor on the tire surface, the ARIMA model among the time series prediction models was used to Appropriate parameters were selected to suit the temperature change trend, and as a result of comparing and analyzing the measured and predicted data, an accuracy of over 90% was obtained. Based on this, a plan was proposed to reduce the rate of fires in trucks by providing real-time warnings and support for truck drivers to respond to overheating phenomena occurring in the braking system.

Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure (유전체장벽 방전구조의 비접촉식 저온 대기압 면방전 플라즈마를 이용한 빵곰팡이의 살균효과)

  • Ryu, Young Hyo;Uhm, Han Sup;Park, Gyung Soon;Choi, Eun Ha
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.55-65
    • /
    • 2013
  • Sterilization of Neurospora crassa has been investigated in this research by using a surface air plasma with dielectric barrier discharged (DBD) structure under atmospheric pressure. The sinusoidal alternating current has been used in this experiment with discharge voltage of 1.4~2.3 kV. The phase difference between the voltage and current signals are found to be almost 80 degree due to the capacitive property of dielectric barrier. Temperature on the biomaterials has been minimized by radiating the heat with the air cooling system. It is noted that the substrate temperature remains under 37 degree for plasma exposure time of 10 minutes with operation of cooler system. It is found that the ozone, $O_3$, has been measured to be about 25~30 ppm within 1 cm region and to be about 5 ppm at the 150 cm downstream region away from the suface plasma. It is also noted that the nitric oxide, NO, and nitric dioxide, $NO_2$, are not nearly detected. Germination rate and mitochodrial activity of Neurospora crassa immersed in the deionized water have been found to be drastically decreased as the plasma treatment time and its electrical power are increased in this experiment. Here, the mitochondrial activity has been analyzed by MTT (3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. However, sterilization of Neurospora crassa immersed in the Vogel's minimal media has been found to be low by plasma treatment, which is caused by surrounding background solution. This research shows the sterilization possibility of Neurospora crassa by using the noncontated surface DBD plasma, which is different from the plasma jet. This is mainly attibuted to the reactive species generated by the surface plasma, since they play a major role for inhibition of micobes such as Neurospora crassa.

Accuracy evaluation of microwave water surface current meter for measurement angles in middle flow condition (전자파표면유속계의 측정 각도에 따른 평수기 유속 측정 정확도 분석)

  • Son, Geunsoo;Kim, Dongsu;Kim, Kyungdong;Kim, Jongmin
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Streamflow discharge as a fundamental riverine quantity plays a crucial role in water resources management, thereby requiring accurate in-situ measurement. Recent advances in instrumentations for the streamflow discharge measurement has complemented or substituted classical devices and methods. Among various potential methods, surface current meter using microwave has increasingly begun to be applied not only for flood but also normal flow discharge measurement, remotely and safely enabling practitioners to measure flow velocity postulating indirect contact. With minimized field preparedness, this method facilitated and eased flood discharge measurement in the difficult in-situ conditions such as extreme flood in active ways emitting 24.125 GHz microwave without relying on natural lights. In South Korea, a rectangular shaped instrument named with Microwave Water Surface Current Meter (MWSCM) has been developed and commercially released around 2010, in which domestic agencies charging on streamflow observation shed lights on this approach regarding it as a potential substitute. Considering this brand-new device highlighted for efficient flow measurement, however, there has been few noticeable efforts in systematic and comprehensive evaluation of its performance in various measurement and riverine conditions that lead to lack in imminent and widely spreading usages in practices. This study attempted to evaluate the MWSCM in terms of instrumen's monitoring configuration particularly regarding tilt and yaw angle. In the middle of pointing the measurement spot in a given cross-section, the observation campaign inevitably poses accuracy issues related with different tilt and yaw angles of the instrument, which can be a conventionally major source of errors for this type of instrument. Focusing on the perspective of instrument configuration, the instrument was tested in a controlled outdoor river channel located in KICT River Experiment Center with a fixed flow condition of around 1 m/s flow speed with steady flow supply, 6 m of channel width, and less than 1 m of shallow flow depth, where the detailed velocity measurements with SonTek micro-ADV was used for validation. As results, less than 15 degree in tilting angle generated much higher deviation, and higher yawing angle proportionally increased coefficient of variance. Yaw angles affected accuracy in terms of measurement area.

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF

Oxidative Degradation of PCE/TCE Using $KMnO_4$ in Aqueous Solutions under Steady Flow Conditions (유동조건에서 $KMnO_4$도입에 따른 수용액중 PCE/TCE의 산화분해)

  • Kim, Heon-Ki;Kim, Tae-Yun
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.685-693
    • /
    • 2008
  • The rates of oxidative degradation of perchloroethene (PCE) and trichloroethene (TCE) using $KMnO_4$ solution were evaluated under the flow condition using a bench-scale transport experimental setup. Parameters which are considered to affect the reaction rates tested in this study were the contact time (or retention time), and the concentration of oxidizing agent. A glass column packed with coarse sand was used for simulating the aquifer condition. Contact time between reactants was controlled by changing the flow rate of the solution through the column. The inflow concentrations of PCE and TCE were controlled constant within the range of $0.11{\sim}0.21\;mM$ and $1.3{\sim}1.5\;mM$, respectively. And the contact time was $14{\sim}125$ min for PCE and $15{\sim}36$ min for TCE. The $KMnO_4$ concentration was controlled constant during experiment in the range of $0.6{\sim}2.5\;mM$. It was found that the reduction of PCE and TCE concentrations were inversely proportional to the contact time. The exact reaction order for the PCE and TCE degradation reaction could not be determined under the experimental condition used in this study. However, the estimated reaction rate constants assuming pseudo-1st order reaction agree with those reported based on batch studies. TCE degradation rate was proportional to $KMnO_4$ concentration. This was considered to be the result of using high inflow concentrations of reactant, which might be the case at the vicinity of the source zones in aquifer. The results of this study, performed using a dynamic flow system, are expected to provide useful information for designing and implementing a field scale oxidative removal process for PCE/TCE-contaminated sites.

Actual Experience of the Oracle of the I Ching-Death, God and Love: In Front of My Father's Spirit (주역 점(占)의 실제 체험-죽음, 신 그리고 사랑: 아버지의 영전(靈前)에서)

  • Ju Hyun Lee;Bou-Yong Rhi
    • Sim-seong Yeon-gu
    • /
    • v.37 no.2
    • /
    • pp.149-183
    • /
    • 2022
  • The oracle of the I Ching, divination can be understood as 'synchronicity phenomenon' in analytic psychology. In order to experience divination actually, it requires a religious attitude that asks questions with a serious mind when a person is in trouble that consciousness reaches its limit. It is not just a passive attitude, but a modest, active attitude to ask what I can do now. The experience of the oracle of the I Ching connected to supra-consciousness is similar to 'active imagination'-talking with the archetype of collective unconsciousness-and is 'the process of finding the rhythm of Self-archetype, the absolute wisdom of unconsciousness.' One month before my father's death, I took care of him who couldn't communicate verbally and I divination with a question 'What can I do for my father and me now?' The I Ching's answer was hexagram 19 Lin 臨, nine at the beginning. It's message was '咸臨貞吉 joint approach. perseverance brings good fortune.' 志行正也 we must adhere perseveringly to what is right.' Through this phrase, I learned the attitude of waiting for life after death as if 'joyful obedient' to the providence of nature that spring comes after winter. And I found that keeping the touching emotion of meeting infinity (in analytical psychological terms, 'Self') with perseveration is to do the true meaning of life beyond popular money-mindedness. And six months before my father's death, I had a dream about the afterlife. In the process of interpreting that dream, I learned not only from the shock of the direct message that 'it is a truth that there is something after death,' but also the regeneration of the mind through introversion from the similarity between the closed ward and '黃泉'-chinese underworld through amplification. And I learned the importance of an open attitude to accept new things through the 'window to eternity' symbolized by the white iron gate. In my father's catholic funeral ritual, I had hope that the catholic doctrine 'Communio Sanctorum'-A spiral cycle in which the living and the dead help each other may be real as well as a symbol of the individuation process in which consciousness and unconsciousness interact in our minds. Through the consolation received through the funeral visit of many people I met in my life, I found the answer that the path to contact with infinity begins with loving the beings in front of me. I tried to understand this continuous experience by the perspective of analytical psychology.

Climate-related Changes in Fruit Growth of 'Fuyu' Persimmon during the Harvest Season (수확기 동안의 기상 변화에 따른 '부유' 감의 과실 생장)

  • Choi, Seong-Tae;Park, Doo-Sang;Son, Ji-Young;Park, Yeo-Ok;Hong, Kwang-Pyo;Cho, Kwang-Sik
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.32-37
    • /
    • 2013
  • Relationships among climate changes, early frost, and fruit growth were studied during the final month to harvest of late-maturing 'Fuyu' persimmon (Diospyros kaki) to assess the changes in fruit characteristics during this critical period. The heavy frost on Nov. 16 defoliated more than 70% of the leaves, but with little damage on the fruits. However, all the leaves were defoliated by the heavy frost on Nov. 20, and all the fruits were cold-damaged by $-3.3^{\circ}C$ on Nov. 21. Fruit weight increased by 8-25 g per week from Oct. 25 (142 days after full bloom) to Nov. 15, reaching to 250 g, but it decreased by 3-4 g per week after the frost. Hunter a value of fruit skin gradually increased until the last harvest on Nov. 29 with a temporary halt in early Nov. when temperature was high, whereas fruit firmness rapidly decreased after the frost on Nov. 21. Fruit soluble solids were $15.7-16.1^{\circ}Brix$ for the final month. When some branches were covered with non-woven fabrics to avoid direct contact with frost, the fruits on the branches were not visually damaged by the low temperature although 40-60% of their leaves were defoliated on Nov. 16. However, low temperature on Nov. 20 and 21 defoliated all the leaves, causing cold damage on the fruits. There was a highly significant correlation between the fruit diameter and its weight ($R^2$ = 0.73-0.91). So, the regression equations could be used to estimate weight from diameter of the fruits sampled from the branches with the non-woven fabrics. The calculated fruit weight reached to a maximum of 240 g on Nov. 15. Daily increases in fruit weight were 1.1-2.5 g from Oct. 25 to 31, 1.9-3.5 g from Oct. 31 to Nov. 7, and 1.4-1.6 g from Nov. 7 to 12. However, fruit weight decreased by 0.3-1 g per day after the cold damage on Nov. 21. The results indicate that the most appropriate harvest time could be dependent on relationship of fruit growth to climate.