• Title/Summary/Keyword: 직접하중해석

Search Result 273, Processing Time 0.021 seconds

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Determination of Bond Strength and Fracture Energy of a Bi-material Cylinder with Peny-shaped Interface Crack by Pull-off Test (직접인장시험에 의한 원형 비부착면이 삽입된 신.구 콘크리트의 부착강도 및 파괴에너지 산정)

  • Yang, Sung-Chul;Kim, Jin-Chul;Park, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.47-56
    • /
    • 2004
  • To determine the pure bond strength between substrate and its overlayed concrete material, a direct pull-off test method was introduced by using a bi-material cylinder with which a penny-shaped crack was mountained at its interface. First, to evaluate the stress magnification or concentration at the interface, the energy release rates of a penny-shaped interface crack in remote tension loading on a bi-material cylinder were determined in terms of different modulus ratios and undonded area ratios(crack ratios) using a commercial finite element program. Then the energy release rates were calibrated as non-dimensional values in consideration of structural dimensions and applied forces. And to evaluate whether this new pull-off test method gives sound test results, three different sizes of unbended area ratios were incorporated along their interface in bi-material cylinders(sulphur polymer concrete + old concrete). Test results showed that all specimens were broken off at their interfaces as intended. Also the FEM analyses and test results indicated that a bi-material specimen with unbended area ratio of 0.4$\sim$0.6 is suitable for best accurate testing.

  • PDF

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.

Plume Behavior Study of Green FLP-106 ADN Thruster Using DSMC Method (직접모사법을 이용한 친환경 FLP-106 ADN 추력기의 배기가스 거동 연구)

  • Kuk, Jung Won;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.649-657
    • /
    • 2019
  • Hydrazine, which is used as a representative monopropellant, is an extremely poisonous substance and has a disadvantage that it is harmful to the human body and is very difficult to handle. In recent years, research on the development of non-toxic and environmentally friendly propellants has attracted much attention. Ammonium dinitramide(ADN) based propellant developed by Swedish Space Corporation has superior performance to hydrazine and has been commercialized through performance verification in space environment. On the other hand, the exhaust gas from a thruster nozzle collides with a satellite while it is spreading in the vacuum space, thermal load and surface contamination may occur and may reduce the performance and lifetime of the satellite. However, a study on the effect of the exhaust gas of the green propellant thruster on the satellite has not been conducted in earnest yet. Therefore, the exhaust gas behavior in space was analyzed in this study for the ADN based green monopropellant using Navier-Stokes equations and the DSMC method. As a result, it can be expected to be used as design validation data in the development of satellite when using the ADN based green monopropellant.

Estimation of Shear Wave Velocity of Rockfill Zone by Dynamic Analysis using Micro-earthquake Records (미소지진 계측기록을 활용한 동적응답해석에 의한 댐 사력존 전단파속도 산정)

  • Ha, Ik Soo;Lee, Soo Gwun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.141-152
    • /
    • 2015
  • The objective of this study is to estimate shear wave velocity of rockfill materials by making practical use of the micro-earthquake records which are ordinarily obtained at a domestic rockfill dam and to verify its applicability. Micro-earthquake records were obtained at the site of Heongseong dam and Soyanggang dam, which are the existing multi-purpose dams in Korea. In the previous study, the fundamental periods of each dam were already evaluated by analyzing the response spectrum of the observed records. In this study, numerical analyses varying shear moduli of rockfill zone were carried out using the acceleration histories measured at the abutment as input ground motions. From comparison between the fundamental periods calculated by numerical analyses and measured records, the shear wave velocities with depth were estimated. It is found that the effect of different earthquake events on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships and field test results, applicability of suggested method is verified. Therefore, in case that it is impossible to conduct field tests and estimation is preliminary, the suggested method can be practically used.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF

A Study on the Relationship between the Eccentricity and the Level of Damage in the Seismic Response of Buildings with Plan Irregularities (지진 하중을 받는 평면 비정형 건물의 편심과 손상도의 상관관계에 대한 연구)

  • Jeong, Seoung-Hoon;Lee, Kwang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • Most previous research on the seismic response of structures with plan irregularities have focused on the relationship between the eccentricity and the amount of torsion. This approach cannot provide the direct relationship between the irregularity and the damage. Therefore, an investigation on the relationship between the eccentricities of buildings with plan irregularities and the damage index was performed. Inelastic dynamic time-history analyses were performed on one-story buildings with various eccentricities. For the damage assessment, a 3D damage index was adopted to reflect the effect of the bi-directional response and torsion. Based on the analysis results, buildings with eccentricities of 10%, 20% and 30% will suffer 3~5%, 13~18%, and 33~47% more damage than their regular counterparts, respectively.

A Study on Improving the Capacity of Absorbing Boundary Using Dashpot (점성감쇠기를 이용하는 흡수경계의 성능 향상에 관한 연구)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.629-640
    • /
    • 2007
  • In this paper an analytical study is carried out to improve the capacity of absorbing boundary using dashpot, one of the most widely used absorbing boundaries in FEM. Using 2-D harmonic plane wave equation, absorbing boundary condition is modified to maximize its capacity according to the incident angle. Validity of the absorbing boundary conditions which is modified is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey's problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical study is carried out through comparison of displacement at the interior region and the boundary of the numerical model.

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • 장수호;이석원;배규진;최순욱;박해균;김재권
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.79-86
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been considered in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compressive strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on the experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties could be well regressed through exponential and logarithmic functions of time.