• Title/Summary/Keyword: 직물 복합재

Search Result 50, Processing Time 0.034 seconds

Test Method on Interlaminar Tensile Properties of Carbon fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee, Ji-Hyung;Kim, Hyoung-Geun;Lee, Hyung-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.48-52
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental study to measure that properties of carbon fabric/phenolic composites which are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best test method to measure transverse through-the-thickness properties of composite materials was developed by the experimental results that strain trends on all faces of composite specimen are the same.

Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber (탄화규소섬유와 탄소섬유 하이브리드 직물을 강화재로 한 SiC 매트릭스 세라믹복합재의 기계적물성, 산화 및 삭마 저항성 개선 연구)

  • Yoon, Byungil;Kim, Myeongju;Kim, Jaesung;Kwon, Hyangjoo;Youn, Sungtae;Kim, Jungil
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.148-157
    • /
    • 2019
  • In this study, $C_f/SiC$, $SiC_f/SiC$ and $C_f-SiC_f/SiC$ ceramic composites reinforcing carbon fiber, SiC fiber and hybrid fiber were fabricated by hybrid TGCVI and PIP process. After the thermal shock cycle, 3-point bending and Oxy-Acetylene torch test, their mechanical behavior, oxidation and erosion resistance were evaluated. The $C_f/SiC$ composite showed a decrease in mechanical property along with increasing temperature, a pseudo-ductile fracture mode and a large quantity of erosion. The $SiC_f/SiC$ composite exhibited stronger mechanical property and lower erosion rate compared to the $C_f/SiC$, but brittle fracture mode. On the other hand, hybrid type of $C_f-SiC_f/SiC$ composite gave the best mechanical property, more ductile failure mode than the $SiC_f/SiC$, and lower erosion rate than the $C_f/SiC$. During the Oxy-Acetylene torch test, the $SiO_2$ formed by reaction of the SiC matrix with oxygen prevented further oxidation or erosion of the fibers for $C_f-SiC_f/SiC$ and $SiC_f/SiC$ composites particularly. In conclusion, if a hybrid composite with low porosity is prepared, this material is expected to have high applicability as a high temperature thermo-structural composite under high temperature oxidation atmosphere by improving low mechanical property due to the oxidation of $C_f/SiC$ and brittle fracture mode of $SiC_f/SiC$ composite.

원형 브레이드 강화 일가소성 복합재료의 역학적 특성 연구(II)

  • 이덕래;김학용;최종주;서민강
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.299-302
    • /
    • 1998
  • Textile composite란 직물, 편성물, 브레이드, 3축포 등의 텍스타일 제품을 강화재로 사용한 섬유강화 복합재료의 충칭으로서 텍스타일이 지닌 뛰어난 기능을 matrix에 부가함으로서 단일재료로서는 얻지 못하는 뛰어난 공업재료를 만들 수 있다. 브레이드는 3가닥 이상의 실이 서로 교착하여 2축포를 형성하며, 조성과정에서 중앙사를 삽입하면 3축포가 된다. (중략)

  • PDF

Hygrothermal Effect of Salt-Water Environments on Mechanical Properties of Carbon/Epoxy Composites (탄소섬유/에폭시 복합재의 기계적 특성에 미치는 염수환경의 열습 영향)

  • Hwang, Young-Eun;Yoon, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1261-1266
    • /
    • 2012
  • In this study, salt-water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt-water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain-woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and $75^{\circ}C$ while being exposed to the salt-water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt-water uptake; this, in turn, reduces the compressive strength more rapidly.

Finite Element Analysis and Validation for Mode I Interlaminar Fracture Behavior of Woven Fabric Composite for a Train Carbody Using CZM(Cohesive Zone Model) (CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seol;Yoon, Hyuk-Jin;Seo, Seung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.719-724
    • /
    • 2009
  • In this study, DCB(double cantilever beam) specimens of woven fabric carbon/epoxy and glass/epoxy were manufactured and mode I fracture toughness of specimen was measured according to ASTM 5528-01. And FE analysis was conducted in the same condition and evaluated the behavior of delamination analytically. Mode I fracture toughness measured by test was $845.7\;J/m^2$ in the case carbon/epoxy and that of glass/epoxy was $1,042\;J/m^2$. FE analysis was conducted using cohesive elements for adhesive layer and applied measured fracture toughness. To verify the result of analysis, the reaction force measured at the end of specimen and that calculated by Timoshenko beam theory were compared. The numerical results show good agreements with the measured one.

Evaluation of Impregnating and Mechanical Properties for Glass Fiber/Polycarbonate Composites Depending on Molecular Weight of Matrix (유리섬유/폴리카보네이트 복합재료의 기지 분자량에 따른 함침 및 기계적 물성 평가)

  • Kim, Neul-Sae-Rom;Jang, Yeong-Jin;Lee, Eun-Soo;Kwon, Dong-Jun;Yang, Seong Baek;Lee, Jungeon;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Fiber-reinforced thermoplastic composites are applied to transport industries to lightweight of body, and applications will be expanded gradually. In this study, the impregnation and mechanical properties of continuous glass fiber (GF) reinforced polycarbonate (PC) composites were evaluated with different molecular weights of PC. The continuous GF reinforced PC composite were prepared by using GF fabric and PC film via continuous compression molding method. The melting flow index and tensile strength of PC matrix were evaluated with different molecular weights. Mechanical properties (tensile, flexural, and compressive) and pore rate of GF/PC composite were evaluated with different molecular weights of PC. The fracture behavior was analyzed to fracture surface of GF/PC composite using FE-SEM images. As these results, it was condition of representing the best mechanical property that the GF/PC composite was prepared by using PC of 20,000 g/mol as matrix.

Test Evaluation of a Linerless Composite Propellant Tank Using the Composite Collapsible Mandrel (복합재 분리형 맨드릴을 이용한 라이너 없는 복합재 추진제 탱크에 대한 시험 평가)

  • Seung Yun Rhee;Kwangsoo Kim;Young-Ha Yoon;Moo-Keun Yi;Hee Chul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.132-139
    • /
    • 2023
  • A linerless composite propellant tank was designed and manufactured by using the carbon fiber-reinforced composite materials which have superior strength-to-weight ratio in order to reduce weight of the tank. In this research, we designed a sub-scale composite propellant tank with a diameter of 800 mm to withstand an MEOP of 1.7 MPa. We manufactured the boss of the tank by using the same composite materials to reduce the thermal expansion difference between the boss and the secondary-bonded composite layers of the barrel in the cryogenic environment. We used the collapsible mandrel to manufacture the tank without any liner. The mandrel was made from epoxy-based composite tooling prepregs to reduce weight of the mandrel. We manufactured the test tanks by laying up the carbon fiber fabric prepregs manually on the mandrel and then applying the autoclave cure process. We performed a proof test, a helium tightness test, a repeated pressurization test, and a burst test in room temperature. The test results demonstrate that the proposed design and manufacture process satisfies all strength requirements as well as an anti-leakage requirement.

Evaluation of the Impact Behavior of Inline Disk Wheel Made of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재로 구성된 인라인 디스크 휠의 충격거동 평가)

  • Kwon, Hye-In;Lee, Sang-Jin;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this paper, The concept of a wheel with carbon fiber composite is to replace the conventional material used for a wheel hub, such as plastic, with a disk-type hub made of carbon fabric and epoxy resin. The impact load from the ground under real conditions was considered; a low-velocity impact test was conducted to evaluate the impact performance of the carbon wheel and compare it with that of a conventional plastic wheel. This study applied a 70 J impact load as a test condition. The impact energy was controlled in the test by adjustment of height and weight of impactor. The use of a carbon disk wheel hub was confirmed to reduce weight and generate an excellent repulsive force at low energy under conditions similar to real driving conditions. The results showed that the maximum load increased proportionally depending on the impact load, but the growth of the maximum load was reduced at a 20 J impact load and tended to decrease at a 45 J impact load. The carbon wheel showed excellent properties ; the level of rebounding was 35.3% and 19.1% of the total impact energy at impact loads of 5 J and 10 J, respectively. On the other hand, the carbon disk wheel rebounded less than 5% of the total energy due to crack generation of the thin carbon hub for impact loads of more than 20 J.

Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composite for Tilting Train (틸팅차량용 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가)

  • Lee Eun Dong;Yoon Sung Ho;Shin Kwang Bok;Jeong Jong Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.189-192
    • /
    • 2004
  • In this study, mode II interlaminar fracture phenomena of carbon fabric/epoxy composite for tilting train were investigated. The end notched flexural specimen containing an artificial crack with the thickness of 12.5fl11l was used. The mode II interlaminar fracture toughness was evaluated through a three point bending test and the fractured surfaces were examined through a scanning electron microscope. The experimental results obtained in this study would be applicable in the design and structural analysis of the composite structures.

  • PDF

Electromagnetic Characteristics of Carbon Black filled Class-Fabric Composite Sandwich Structure (카본블랙이 첨가된 유리직물 복합재 샌드위치 구조의 전자기적 특성)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kang, Lae-Hyong;Han, Jae-Hung;Kim, Chun-Gong;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.234-237
    • /
    • 2003
  • The absorption and the interference shielding of the electromagnetic wave problem have been a very important issue for commercial and military purposes. This study dealt with the simulation reflection loss for electromagnetic absorbing sandwich type structures in X-band(8.2Ghz~12.4GHz). Glass/epoxy composites containing conductive carbon blacks were used for the face sheets and styrofoams were used for the core. Their permittivities in X-band were measured using the transmission line technique. Simulation results of 3-1ayered sandwich type structures showed the reflection loss using the theory about transmission and reflection in a multi-layered medium.

  • PDF