Finite Element Analysis and Validation for Mode I Interlaminar Fracture Behavior of Woven Fabric Composite for a Train Carbody Using CZM(Cohesive Zone Model)

CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구

  • 김승철 (한국철도기술연구원, 철도구조연구실) ;
  • 김정석 (한국철도기술연구원, 철도구조연구실) ;
  • 윤혁진 (한국철도기술연구원, 철도구조연구실) ;
  • 서승일 (한국철도기술연구원, 철도구조연구실)
  • Published : 2009.10.30

Abstract

In this study, DCB(double cantilever beam) specimens of woven fabric carbon/epoxy and glass/epoxy were manufactured and mode I fracture toughness of specimen was measured according to ASTM 5528-01. And FE analysis was conducted in the same condition and evaluated the behavior of delamination analytically. Mode I fracture toughness measured by test was $845.7\;J/m^2$ in the case carbon/epoxy and that of glass/epoxy was $1,042\;J/m^2$. FE analysis was conducted using cohesive elements for adhesive layer and applied measured fracture toughness. To verify the result of analysis, the reaction force measured at the end of specimen and that calculated by Timoshenko beam theory were compared. The numerical results show good agreements with the measured one.

본 연구에서는 직물 탄소/에폭시와 유리/에폭시의 DCB(double cantilever beam)시편을 제작하여 ASTM 5528-01에 준하여 모우드 I 층간파괴인성을 측정하고, 이와 동일한 조건의 유한요소해석을 수행하여 층간파괴거동을 해석적으로 평가하였다. 시험에 의하여 측정된 층간파괴인성은 탄소/에폭시는 평균 $845.7J/m^2$, 유리/에폭시는 $1,042J/m^2$였다. 유한요소 모델은 접착요소를 이용하여 층간파괴를 구현하였고, 측정된 층간파괴인성을 부여하였다. 해석 결과의 검증을 위하여 시험을 통하여 측정된 시편 끝단의 반력과 Timoshenko 빔 이론을 통하여 계산된 결과를 비교하였다. 측정된 결과와 해석결과는 유사하였다.

Keywords

References

  1. 김정석, 정종철, 이상진(2005), "하이브리드 복합재 철도차량 차체에 대한 시험적 연구," 한국복합재료학회지, 제 18권, 제 6호, pp. 19-25
  2. 윤성호, 허광수, 정종철, 김정석, 한성호(2005), "틸팅차량 차체용 복합재 구조재에 대한 모우드I 변형 하의 손상허용 평가 기법 연구," 한국철도학회논문집, 제8권, 제6호, pp.573-580
  3. Andras Szekrenyes, "Overview on the experimental investigations of the fracture toughness in composite materials," HEJ
  4. Nidal Alif, Leif A. Carlsson, John W. Gillespie, Jr.(1997),"Mode I, Mode II, and Mixed Mode interlaminar fracture of woven fabric carbon/epoxy," Composite Materials : Testing and design, Thirteenth Volume, ASTM STP 1242, S.J. Hooper,Ed., American Society for Testing Materials, pp. 82-106
  5. Dan Mihai Constantinescu, Nicolae Constantin, Thomas Goss, 'Experimental evaluation of Mode I and Mode II interlaminar fracture toughness of textile composites.'
  6. Panuwat Suppakul, Sri Bandyopadhyay(2002), "The effect of weave pattern on the mode-I interlaminar fracture energy of E-glass/viny1 ester composites," Composites Science and Technology, Vol. 62, pp. 709-717 https://doi.org/10.1016/S0266-3538(01)00220-2
  7. Adrians F Gill, Paul Robinson, Silvetre Pinho(2009), "Effect of variation on fibre volume fraction on Mode I & II delamination behaviour of 5HS woven composites manufactured by RTM," Composites Science and Technology, in press
  8. Emile S. Greenhalgh, Charlotte Rogers, Paul Robinson(2009), "Fractographic observations on delamination growth and the subsequent migration through the laminate," Composites Science and Technology, in press
  9. J. W. H. Yap, M. L. Scott, R.S. Thomson and D. Hachenberg(2002), "The analysis of skin-to-stiffener debonding in composiye aerospace structures." Composite Structures, Vol. 57, No. 1, pp 425-435 https://doi.org/10.1016/S0263-8223(02)00110-1
  10. J. W. H. Yap, M. L. Scott, R.S. Thomson and D. Hachenberg(2004), "Influence of postbucking behaviour of composite stiffened pannels on the damage criticality," Composite Structures, Vol. 66, pp. 197-206 https://doi.org/10.1016/j.compstruct.2004.04.038
  11. R. Krueger, M. K. Cvikovich, T. K. O'Brien and P. J. Minguet(2000), "Testing and Analysis of composite Skin/Stringer Debonding Under Multi-Axial Loading," Journal of composite Materials, Vol. 34, No. 15, pp. 1263-1300 https://doi.org/10.1106/BDU1-KV0H-XYVT-9R5H
  12. P.P Camanho, C. G. Davila and S. T. Pinho(2004), "Fracture analysis of composite cocuredstructural joint using decohesive element," Fatigue Fract. Mater. Struct., Vol. 27, pp. 745-757 https://doi.org/10.1111/j.1460-2695.2004.00695.x
  13. ASTM D5528-01(2001), "Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber-Reinforced polymer matrix Composites," American Society for Testing Materials, Vol. 15.03
  14. Ted Diehl(2007), "On using a penalty-based cohesive-zone finite element approach, Part I : Elastic solution benchmarks," J Adhes, Vol 28, pp. 237-255
  15. P.P Camanho, C. G. Davila and M. F. De Moura(2002), "Numerical Simulation of Mixed-mode Progressive Delamination in Composite Materials," Journal of composite Materials, Vol. 37, No. 16/2003, pp. 1415-1424 https://doi.org/10.1177/0021998303034505