• Title/Summary/Keyword: 직렬곱셈 연산기

Search Result 24, Processing Time 0.024 seconds

A Serial Multiplier for Type k Gaussian Normal Basis (타입 k 가우시안 정규기저를 갖는 유한체의 직렬곱셈 연산기)

  • Kim, Chang-Han;Chang, Nam-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.84-95
    • /
    • 2006
  • In H/W implementation for the finite field the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. In this paper, we propose a new, simpler, parallel multiplier over $GF(2^m)$ having a Gaussian normal basis of type k, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{mk})$ containing a type-I optimal normal basis. For k=2,4,6 the time and area complexity of the proposed multiplier is the same as tha of the best known Reyhani-Masoleh and Hasan multiplier.

3X Serial GF($2^m$) Multiplier Architecture on Polynomial Basis Finite Field (Polynomial basis 방식의 3배속 직렬 유한체 곱셈기)

  • Moon, Sang-Ook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.328-332
    • /
    • 2006
  • Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only partial-sum block in the hardware. So far, there have been grossly 3 types of studies on GF($2^m$) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software.

Parallelism of the bit-serial multiplier over Galois Field (유한체 상에서 비트-직렬 곱셈기의 병렬화 기법)

  • 최영민;양군백
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.3B
    • /
    • pp.355-361
    • /
    • 2001
  • 유한체(Galois Field) 상에서의 곱셈(multiplication)을 구현하는 방법은 크게 병렬 곱셈기(parallel multiplier)와 직렬 곱셈기(serial multiplier)로 나누어질 수 있는데, 구현시 하드웨어 면적을 작게 차지한다는 장점 때문에 직렬 곱셈기가 널리 사용된다. 하지만 이 직렬 곱셈기를 이용하여 계산을 하기 위해서는 병렬 곱셈기에 비해 많은 시간이 필요하게 된다. 직렬기법과 병렬기법의 결합이 이를 보완할 수 있게 된다. 본 논문에서는 복잡도는 직렬 곱셈기와 큰 차이가 없으면서 연산시간을 줄인 곱셈기*(multiplier)를 제안하였다. 이 곱셈기를 사용하면 복잡도는 크게 늘어나지 않았으면서 유한체 상에서의 곱셈을 하는데 필요한 시간을 줄이는 효과를 얻을 수 있다.

  • PDF

Design of an Operator Architecture for Finite Fields in Constrained Environments (제약적인 환경에 적합한 유한체 연산기 구조 설계)

  • Jung, Seok-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • The choice of an irreducible polynomial and the representation of elements have influence on the efficiency of operators for finite fields. This paper suggests two serial multiplier for the extention field GF$(p^n)$ where p is odd prime. A serial multiplier using an irreducible binomial consists of (2n+5) resisters, 2 MUXs, 2 multipliers of GF(p), and 1 adder of GF(p). It obtains the mulitplication result after $n^2+n$ clock cycles. A serial multiplier using an AOP consists of (2n+5) resisters, 1 MUX, 1 multiplier of CF(p), and 1 adder of GF(p). It obtains the mulitplication result after $n^2$+3n+2 clock cycles.

Design of Serial Decimal Multiplier using Simultaneous Multiple-digit Operations (동시연산 다중 digit을 이용한 직렬 십진 곱셈기의 설계)

  • Yu, ChangHun;Kim, JinHyuk;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.115-124
    • /
    • 2015
  • In this paper, the method which improves the performance of a serial decimal multiplier, and the method which operates multiple-digit simultaneously are proposed. The proposed serial decimal multiplier reduces the delay by removing encoding module that generates 2X, 4X multiples, and by generating partial product using shift operation. Also, this multiplier reduces the number of operations using multiple-digit operation. In order to estimate the performance of the proposed multiplier, we synthesized the proposed multiplier with design compiler with SMIC 110nm CMOS library. Synthesis results show that the area of the proposed serial decimal multiplier is increased by 4%, but the delay is reduced by 5% compared to existing serial decimal multiplier. In addition, the trade off between area and latency with respect to the number of concurrent operations in the proposed multiple-digit multiplier is confirmed.

Efficient Finite Field Arithmetic Architectures for Pairing Based Cryptosystems (페어링 기반 암호시스템의 효율적인 유한체 연산기)

  • Chang, Nam-Su;Kim, Tae-Hyun;Kim, Chang-Han;Han, Dong-Guk;Kim, Ho-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.33-44
    • /
    • 2008
  • The efficiency of pairing based cryptosystems depends on the computation of pairings. pairings is defined over finite fileds GF$(3^m)$ by trinomials due to efficiency. The hardware architectures for pairings have been widely studied. This paper proposes new adder and multiplier for GF(3) which are more efficient than previous results. Furthermore, this paper proposes a new unified adder-subtractor for GF$(3^m)$ based on the proposed adder and multiplier. Finally, this paper proposes new multiplier for GF$(3^m)$. The proposed MSB-first bit-serial multiplier for GF$(p^m)$ reduces the time delay by approximately 30 % and the size of register by half than previous LSB-first multipliers. The proposed multiplier can be applied to all finite fields defined by trinomials.

Fast Bit-Serial Finite Field Multipliers (고속 비트-직렬 유한체 곱셈기)

  • Chang, Nam-Su;Kim, Tae-Hyun;Lee, Ok-Suk;Kim, Chang-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.49-54
    • /
    • 2008
  • In cryptosystems based on finite fields, a modular multiplication operation is the most crucial part of finite field arithmetic. Also, in multipliers with resource constrained environments, bit-serial output structures are used in general. This paper proposes two efficient bit-serial output multipliers with the polynomial basis representation for irreducible trinomials. The proposed multipliers have lower time complexity compared to previous bit-serial output multipliers. One of two proposed multipliers requires the time delay of $(m+1){\cdot}MUL+(m+1){\cdot}ADD$ which is more efficient than so-called Interleaved Multiplier with the time delay of $m{\cdot}MUL+2m{\cdot}ADD$. Therefore, in elliptic curve cryptosystems and pairing based cryptosystems with small characteristics, the proposed multipliers can result in faster overall computation. For example, if the characteristic of the finite fields used in cryprosystems is small then the proposed multipliers are approximately two times faster than previous ones.

Fast Sequential Optimal Normal Bases Multipliers over Finite Fields (유한체위에서의 고속 최적정규기저 직렬 연산기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1207-1212
    • /
    • 2013
  • Arithmetic operations over finite fields are widely used in coding theory and cryptography. In both of these applications, there is a need to design low complexity finite field arithmetic units. The complexity of such a unit largely depends on how the field elements are represented. Among them, representation of elements using a optimal normal basis is quite attractive. Using an algorithm minimizing the number of 1's of multiplication matrix, in this paper, we propose a multiplier which is time and area efficient over finite fields with optimal normal basis.

(Design of GF(216) Serial Multiplier Using GF(24) and its C Language Simulation (유한체 GF(24)를 이용한 GF(216)의 직렬 곱셈기 설계와 이의 C언어 시뮬레이션)

  • 신원철;이명호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.3
    • /
    • pp.56-63
    • /
    • 2001
  • In this paper, The GF(216) multiplier using its subfields GF(24) is designed. This design can be used to construct a sequential logic multiplier using a bit-parallel multiplier for its subfield. A finite field serial multiplier using parallel multiplier of subfield takes a less time than serial multiplier and a smaller complexity than parallel multiplier. It has an advatageous feature. A feature between circuit complexity and delay time is compared and simulated using C language.

  • PDF

3X Serial GF(2m) Multiplier on Polynomial Basis Finite Field (Polynomial basis 방식의 3배속 직렬 유한체 곱셈기)

  • 문상국
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.255-258
    • /
    • 2004
  • Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only Partial-sum block in the hardware.

  • PDF