• 제목/요약/키워드: 지하 공기열

검색결과 29건 처리시간 0.023초

복공식 지하 압축공기에너지 저장공동의 열역학적 에너지수지 분석 (Thermodynamic Energy Balance Analysis of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES))

  • 김형목;박도현;류동우;최병희;송원경
    • 터널과지하공간
    • /
    • 제21권4호
    • /
    • pp.297-306
    • /
    • 2011
  • 본 연구에서는 지하 압축공기에너지 저장공동 주변 지하수 및 압축공기의 유체유동과 열전달 거동 해석을 위한 다상다성분 열유동 해석 결과를 이용하여 지하 저장공동의 열역학적 에너지수지 분석을 통한 에너지 효율평가를 실시하였다. 복공재인 콘크리트 라이닝이 충분한 기밀성능을 발휘할 경우, 주입 압축과정에서 저장공동으로부터 손실되는 에너지의 대부분은 콘크리트 라이닝 및 주변 암반에의 열전도를 통해 발생함을 확인하였다. 지하 압축공기에너지 저장공동의 에너지 효율은 압축공기 주입온도에 민감한 결과를 보였으며, 주입온도가 주변 암반의 온도에 근사할 경우, 손실된 에너지의 대부분이 토출 팽창과정에서 저장공동으로 유입 회수되는 결과를 보였다. 한편, 콘크리트 라이닝의 열전도특성이 저장공동의 에너지효율에 미치는 영향은 크지 않았다.

지하공기열 히트펌프 제습기에 관한 실험적 연구 (An Experimental Study on a Heat Pump with Dehumidification Function that Utilizes Underground Air Heat)

  • 고지운;박윤철;고광수
    • 설비공학논문집
    • /
    • 제26권2호
    • /
    • pp.55-60
    • /
    • 2014
  • The present study has been conducted to develope a heating system for a green house with heat from underground air at Jeju Island. The temperature of the air deposited in the underground is $16{\sim}18^{\circ}C$ throughout the year, and it also has a large amount of moisture. Therefore, the air could not directly used for the heating of a green house. In this study, a heat pump with dehumidification function has been developed, which consisted of three evaporators, where the moisture removal occurs, accompanied by temperature drop. The dropped temperature is recovered, while passing through a series condenser. The air temperature increased from $17^{\circ}C$ to 35 with a 2.1 kg/h of moisture removal rate. The developed system moisture removal performance shows 0.91 kg/kWh.

열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가 (Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis)

  • 김형목;;류동우;신중호;송원경
    • 터널과지하공간
    • /
    • 제21권5호
    • /
    • pp.394-405
    • /
    • 2011
  • 본 연구에서는 복공식 지하 압축공기에너지 저장공동의 역학적 변형 및 누출 거동의 복합거동을 파악할 목적으로 비등온 다상다성분 유체유동 및 역학적 거동의 연계해석이 가능한 TOUGH-FLAC 해석을 실시하였다. 지하압축공기에너지 저장 공동의 초기 및 장기 운영 과정에서 고압 압축공기 인입 입출에 따른 콘크리트 라이닝 내부에 발생하는 응력 양상을 살펴보고 저장공동 내부 압력 및 온도 변화를 파악함으로써 기밀성능을 평가하였다. 최대 저장공동 운영압력 8 MPa 조건에서 콘크리트 라이닝 내부에서는 공기침투압에 의한 유효응력의 감소와 접선방향의 인장응력의 증가에 따라 인장균열이 발생할 수 있음을 확인하였다. 콘크리트 라이닝 내부의 인장균열 발생에 따른 투과특성 증가 모델을 이용한 해석 결과, 저장공동 천정부 및 측벽부 일부에서 인장파괴가 발생하여 이들 영역에서의 투과계수는 초기 $10{\times}10^{-20}m^2$에서 $5.0{\times}10^{-13}m^2$까지 증가하였다. 한편, 콘크리트 라이닝 내부 인장균열 발생 및 투과특성 증가에도 불구하고 저장공동 내부 압축공기 압력은 주변 암반의 기밀성능으로 인해 일정하게 유지되고 공기누출량은 일일주입량의 0.02%에도 못 미쳐 복공식 지하 압축공기에너지 저장공동의 유효성을 확인할 수 있었다.

Diagonal 환기 시스템에서 공기 조절기의 위치 및 크기에 따른 풍속 변화에 관한 실험적 연구 (An Experimental Study On The Change Of Air Velocity With Respect To The Location And Size Of Regulators For Diagonal Ventilation System)

  • 최종악;윤찬훈;김진
    • 터널과지하공간
    • /
    • 제19권1호
    • /
    • pp.11-18
    • /
    • 2009
  • 원자력 에너지를 이용할 때 필연적으로 방사성 폐기물이 발생된다. 방사성폐기물을 처분하기 위한 처분장은 주로 외부와 단절된 지하공간을 이용하며 방사성폐기물을 거치할 수 있는 Diagonal system을 기본으로 하며, 시스템에 발생된 열을 재기하기 위해서는 환기시설이 필수적이다. 따라서 본 연구에서는 Diagonal system에서 공기 조절기의 위치와 크기를 변화시켜 Diagonal branch로 흐르는 공기의 풍속을 측정하였다. 그 결과 Diagonal branch를 지나는 풍속은 중간에 위치한 공기 조절기의 크기에 관계없이 처음과 마지막 공기 조절기의 크기에 의해서 결정되었다. 따라서 일정한 유랑을 Diagonal branch에 주입하기 위해서는 처음과 마지막 공기 조절기를 설치하여 총 유량을 결정한 후 중간지점에 공기 조절기를 설치하여야 한다.

복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석 (Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES))

  • 김형목;;류동우;선우춘;송원경
    • 터널과지하공간
    • /
    • 제21권4호
    • /
    • pp.287-296
    • /
    • 2011
  • 본 연구에서는 압축공기에너지 지하저장을 위한 복공식 암반공동의 기밀성능을 평가할 목적으로 다상유체 열유동 해석을 수행하였다. 기밀성능은 저장공동으로부터 누출되는 공기질량으로 평가하였으며, 저장공동 내부에 콘크리트 라이닝 기밀시스템을 설치하고 저장공동은 비교적 천심도인 지하 100m 심도에 위치하는 것으로 가정하였다. 저장공동 내 질량수지분석 결과, 콘크리트 라이닝 및 주변 암반의 투과계수가 누기량 및 저장공동의 장기적 기밀성능에 미치는 영향이 큰 것으로 파악되었으며 콘크리트 라이닝의 투과계수가 $1.0{\times}10^{-18}\;m^2$이하 일 경우, 저장공동 운영압력이 5 MPa에서 8 MPa 사이일 때 누기량은 1%이하 인 것으로 계산되었다. 또한, 콘크리트 라이닝의 초기포화도에 따른 공기누출량 계산결과, 라이닝 수분포화도를 증가시킬수록 누기량은 감소하고 저장공동 기밀성능이 향상됨을 확인하였다.

지하처분장내 고준위 방사성 폐기물 발열량에 따른 자연환기력 연구 (A Study on Natural Ventilation by the Caloric Values of HLW in the Deep Geological Repository)

  • 노장훈;최희주;유영석;윤찬훈;김진
    • 터널과지하공간
    • /
    • 제21권6호
    • /
    • pp.518-525
    • /
    • 2011
  • 본 연구에서는 고준위 방사성 폐기물 처분장의 특징인 높은 고도 차이와 폐기물에서 발생하는 발열량에 따른 자연 환기력을 계산하고 이를 바탕으로 자연 환기량을 계산하였다. 고준위 방사성 폐기물 처분장은 열엔진과 유사한 폐쇄 싸이클의 열역학적인 과정을 따른다고 볼 수 있다. 지하처분장내 고준위 폐기물의 발열에 의한 열이 공기에 추가되고 이로 인해 공기가 upcast 수직갱을 통해 위로 올라가는 동안 팽창됨에 따라 주위에 일을 하고, 이때 한 일에 의해 첨가된 열의 일부분은 임시로 기계적 에너지로 변함으로서 공기의 흐름을 촉진할 수 있다. 이는 처분장 내에서 지속적이고 강력한 열원이 존재한다면 자연 지속적인 공기의 싸이클적 흐름을 가능하게 할 것이다. 이를 바탕으로 고준위 방사성 폐기물의 심지층 처분시 발생되는 자연 환기량을 수학적 방법으로 계산한 결과 굴뚝효과에 의하여 폐기물 발열량에 따라 $74{\sim}183$Pa의 자연 환기력이 계산되고 이에 따른 자연 환기량은 $92.5{\sim}147.7m^3/s$이 계산되었다. 또한 CFD의 자연환기량 해석결과는 $82{\sim}143m^3/s$로서 수학적인 방 법과 비교하여 매우 비슷한 결과를 나타내었다.

지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구 (A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel)

  • 유지오;김진수;라광훈
    • 한국터널지하공간학회 논문집
    • /
    • 제19권1호
    • /
    • pp.29-39
    • /
    • 2017
  • 본 연구에서는 3면이 지중과 접하는 형태의 전력구에서 온도상승을 방지하기 위한 환기시스템 설계에 필요한 벽면에서 열전달계수 등 열설계 자료를 수치해석적인 방법으로 검토하였다. 수치해석 모델은 터널 벽체에서의 열전달을 고려하기 위해서 전력구의 터널의 라이닝을 포함하는 것으로 모델링하였으며, 전력구에 설치되는 전력케이블의 발열량(117~468 kW/km), 전력구내 풍속(0.5~4.0 m/s)에 따른 터널내 공기온도 및 벽체온도, 벽체를 통한 발열량을 CFD시뮬레이션에 의해서 구하였다. 또한 해석결과로부터 벽체열전달계수를 계산하고 환기구간의 터널내 공기온도를 유지하기 위한 한계거리를 검토하였다. 벽체표면에서 대류열전달계수는 입구영역에서는 불안정한 변화를 보이나 약 100 m정도의 이후에는 일정한 값에 수렴한다. 터널벽체열전달계수는 풍속에 따라 $3.1{\sim}9.16W/m^2^{\circ}C$정도이며, 이를 무차원식으로 표현하면 $Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$이 된다. 열저항 해석기법에 의해서 터널내 온도 예측방법을 제시하였으며, 약 3%이내의 편차로 예측이 가능한 것으로 평가되었다.

열적지표를 적용한 국내 고심도 석탄광산의 열환경 평가 연구 (A Study on Evaluation of Thermal Environment using Heat Stress Indices for Deep Coal Mine in Korea)

  • 박선오;노장훈;김진
    • 터널과지하공간
    • /
    • 제24권2호
    • /
    • pp.166-175
    • /
    • 2014
  • 본 연구에서는 현장실측을 통하여 강원도 태백에 위치한 대규모 석탄광산의 열환경을 평가하였다. 열환경 평가를 위하여 WBGT, HSI, ESI, KATA지수 및 유효온도 등 다양한 열적지표를 적용하였고, 상관분석을 실시하였다. 분석결과 대부분의 작업장에서 높은 열환경이 평가되었고, 특히 열적지표 중 인체의 생리학적 특성을 반영하는 HSI와 최대 땀증발열의 상관계수는 -0.834이고 이것은 HSI지표에 가장 큰 영향을 미치는 것으로 나타났다. 최대 땀증발열에 가장 큰 영향을 미치는 인자는 공기속도이다. 따라서 운영 중인 제 1수직갱의 연장 굴착 또는 공기 누기를 방지하기 위한 구조물을 설치함으로써 환기량 증대를 통해 작업장의 열환경을 개선시킬 수 있을 것으로 판단된다.

비활성 가스제너레이터 성능분석

  • 김수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1999년도 제12회 학술강연회논문집
    • /
    • pp.14-14
    • /
    • 1999
  • 비활성 가스제너레이터는 가스터빈 추진기관 및 기타 열기관을 이용하여 연소가 되지 않는 저온의 공기를 생산하는 기계장치를 말하며 이러한 저온의 비활성 기체를 화재 지역에 분사하는 경우 기존의 소방수를 이용한 화재 진압방식보다 매우 효율적으로 화재진압에 사용되어 질 수 있다. 일반적으로 민항기 등의 가스터빈 추진 기관에서 배기되는 기체내에는 터빈입구온도(TIT : Turbine Inlet Temperature)및 초과공기지수(Excess Air Coefficient)에 따라 다르게 나타나지만 TIT가 1500$^{\circ}$K인 경우 약 13-14%정도의 산소가 잔존하는 것으로 알려져 있다. 따라서 본 연구에서는 가스터빈 및 열교환 시스템 그리고 터빈 1단 등의 시스템 조합율을 통하여 대기 중의 기체의 온도를 영하 2$0^{\circ}C$ 및 산소함유량을 약 5%수준까지 낮춤으로서 이를 대형 화재 진압에 사용하기 위한 연구이다. 비활성 가스제너레이터에 사용하는 연료로는 Kerosene 및 CNG(Compressed Natural Gas)등이 사용될 수 있으며, 유량이 8.1kg/sec인 터보축 가스터빈 엔진을 사용하는 경우 18750㎥ 부피의 비활성기체를 생산하는데 Kerosene 연료가 약 1톤(200$ 이하)이 필요한 것으로 계산되며 이에 소요되는 시간도 약 52분에 지나지 않는 것으로 계산되었다. 만일 50kg/sec의 보다 큰 가스터빈 엔진을 사용하는 경우 약 9분 정도가 필요한 것으로 계산되었다. 사용되는 가스터빈은 압축비가 15, 열교환기의 효율이 $\varepsilon$=0. 그리고 최종 터빈 1단의 팽창비가 1.25가 적합한 것으로 계산된다. 연구 분석 결과 기술적 문제점으로는 배기 가스온도가 낮은데 따른 출구 부분의 Bearing, Sealing이 문제가 될 수 있다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.

  • PDF