• Title/Summary/Keyword: 지하측량

Search Result 149, Processing Time 0.022 seconds

Non-Destructive Precise Electromagnetic Surveying for the Deep Underground Utilities (고심도 지중매설물의 지하측랑을 위한 비파괴 정밀 전자측량)

  • 손호웅;이강원;김형수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.109-121
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechlical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

Constrution and Application of Underground Facilities Survey System using the 3D Integration Map of Underground Geospatial Information (3차원 지하공간통합지도를 활용한 지하시설물 현장 측량 시스템 구축 및 적용)

  • SONG, Seok-Jin;CHO, Hae-Yong;HEO, Hyun-Min;KIM, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.164-173
    • /
    • 2021
  • Recently, as underground space safety issues such as sink hole, ground subsidence and damage to old underground facilities have been increasing in urban areas, the precise management of underground facilities ins more required. Thus, this study developed a function to that, visualize on Integration Map of Underground Geospatial Information a real-time survey data of underground facilities acquired on site or underground facility survey data acquired through on-site survey after underground facility exploration and developed a function convert to surveying-results. In addition, using the on-site survey performance utilization function in connection with the Integration Map of Underground Geospatial Information developed through this study, the surveying -results obtained with the Total-station at the water pipeline burial construction site in Eunpyeong-gu, Seoul are visualized on the Integration Map of Underground Geospatial Information and On-site verification was performed by converting spatial-information performance files and transmitting the Integration Map of Underground Geospatial Information to the mobile center. Based on this, it was possible to verify the work procedure using the surveying-results in the area where the Integration Map of Underground Geospatial Information was built, and to review the direction of future improvement directions.

Accuracy of Drone Based Stereophotogrammetry in Underground Environments (지하 환경에서의 드론 기반 입체사진측량기법의 정확도 분석)

  • Kim, Jineon;Kang, Il-Seok;Lee, Yong-Ki;Choi, Ji-won;Song, Jae-Joon
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.1-14
    • /
    • 2020
  • Stereophotogrammetry can be used for accurate and fast investigation of over-break or under-break which may form during the blasting of underground space. When integrated with small unmanned aerial vehicles(UAVs) or drones, stereophotogrammetry can be performed much more efficiently. However, since previous research are mostly focused on surface environments, underground applications of drone-based stereophotogrammetry are limited and rare. In order to expand the use of drone-based stereophotogrammetry in underground environments, this study investigated a rock surface of a underground mine through drone-based stereophotogrammetry. The accuracy of the investigation was evaluated and analyzed, which proved the method to be accurate in underground environments. Also, recommendations were proposed for the image acquisition and matching conditions for accurate and efficient application of drone-based stereophotogrammetry in underground environments.

A Study on the Underground Utilities Data Base by UTIC System (UTIC System을 이용한 지하매설물 자료기반 구축에 관한 연구)

  • 이재기;최석근;이재동;이현직
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.135-140
    • /
    • 1995
  • As the expansion of metropolis has been going, the role of underground utilities has importantly increased. The existed data is difficulty to acquire accurate data and computerize it. In the construction site, Particularly, the map of existed underground utilities has included so much inaccurate data. This study suggestes that making terrain map and surveying if the position of underground utilities are simultaneously done, also this method improves data accuracy and makes the computerized map such as CAD easy match the map of established underground map. The excution of this study collectes data by surveying of terrain and under ground utilities. Through new data collection, we can plot and acquire the position of real under ground utilities and attribute data about them.

  • PDF

A Study on the Construction of a TestBed for Performance Inspection of Underground Surveying Equipment (지하공간탐사기기 성능검사 테스트베드 구축 연구)

  • Bae, Kyoung Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.525-531
    • /
    • 2021
  • The importance and utilization of underground spatial is increasing due to urban concentration. And so underground spatial information is being built. Because underground spatial information is an important NSDI (National Spatial Data Infrastructure), the accuracy and performance of underground spatial exploration devices used for construction are managed separately. In accordance with the laws and regulations related to spatial information, the government is conducting performance tests for underground facilities surveying equipment. The current performance test site mainly targets metal pipelines, and there is no absolute position surveying inspection system. In this study, test bed model for performance inspection of underground space exploration equipment was presented. The test bed presented in this study can be used as a test site to supplement the limitations of the existing domestic test bed and to verify the performance of the latest equipment.

Improvement on Surveying Performance Evaluation for Public Surveying of Underground Facilities (지하시설물의 공공측량 성과심사 방법 개선에 관한 연구)

  • Jung, Choong Ho;KIM, Chong-Mun;KIM, Ki-Su;CHOI, Yun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.15-23
    • /
    • 2019
  • When the public surveying system was introduced in 1961, large scale surveying performances, such as infrastructure construction work, were dominant. However, due to changes in the environment, most of the current surveying performances focused on small scale underground facilities. The method of surveying underground facilities is as follows: "method of measurement before refilling after burying the pipeline" and "method of using exploration after refilling." There are advantages and disadvantages to each method. It became difficult to obtain the accuracy of the location of the underground facilities due to the fact that there were sections of the pipeline that had not been observed through exploration. Therefore, the 2017 performance evaluation regulations were revised. The revision included the addition of the "Underground Facilities Creation Period," a system that allows for surveys to be evaluated based on actual measurements. However, in this particular field, concerns about the advantages of exploration and the purpose of this study was to investigate the background and purpose of the limitations of the survey have been continuously raised. The purpose of this study was to investigate the background and purpose of the public surveying system and to identify the proportion of underground facilities surveying in comparison to public surveying. This study conducted surveys on the implementers of public surveying and those who did the actual surveying. The researcher has summarized the improvements that incorporate the analysis results and the field comments in the revised performance evaluation regulations in 2017.

A Study on the Accuracy Analysis of Position Measurement Target for Underground Facilities by Retro-reflection (재귀반사체를 이용한 지하시설물 위치측정 타깃의 정확도 분석에 관한 연구)

  • Min, Kwan Sik;Kim, Jae Myeong;Choi, Yun Soo
    • Spatial Information Research
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • Recently 3D surveying is recommended to manage underground facilities systematically before refilling of site operation. As the demand of realtime localization increases, cost reduction and consistent data construction which are realizable by using one man surveying method with unmanned target, are necessary for constructing DB of all sorts of the underground facilities with more speediness and correctness. This study sets a goal to develop a new type of surveying target which allows realtime localization to be performed by one man, through making an optimum reflector(triangle, quadrangle, and semispherical shape) by using the retro-reflection principle of optical prism which is being used for surveying currently. The new surveying target makes realtime surveying possible. To check reliability of its data, the accuracy is compared with surveying coordination of total station for each type in a quantitative method. In the result, the usefulness of the reflector for Underground Facilities localization is proved. Thus the foundation for underground DB construction conducted by one man is established for acquisition of 3D location information in more efficient way through using unmanned target.

동굴측량

  • 입원홍
    • Journal of the Speleological Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.26-28
    • /
    • 1978
  • 동굴측량은 지하에 존재하는 암흑의 동굴을 측정하는 것이어서 그 위치 규모를 표현하는 새로운 분야의 측량이다. 측량은 대별하여 평면, 횡단면, 종단면의 삼도를 나눌 수가 있는데, 여기서 서술하고자 하는 것은 하나의 기선을 중심으로 하여 앞에서 말한 삼도를 동시에 측량할 수 있는 방법이다.(중략)

  • PDF

Program Development and Field Application for the use of the Integration Map of Underground Spatial Information (지하공간통합지도 활용을 위한 프로그램 개발 및 현장 적용)

  • Kim, Sung Gil;Song, Seok Jin;Cho, Hae Yong;Heo, Hyun Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • Due to the recent increase in various problems from underground development in urbanized areas, accurate underground facility information management is highly needed. Therefore, in this study, in order to utilize the Integration Map of Underground Goespatial Information in real time on-site, the function of comparing the mutual location of the GPR (Ground Penetration Radar) sensing data and the Integration Map of Underground Goespatial Information, and function of analyze underground facilities, and function of converting surveying data into a shape file through position correction & attribute editing in a 3D space, and the function of submitting the shape file to the Integration Map of Underground Goespatial Information mobile center was defined and developed as a program. In addition, for the on-site application test of the development program, scenarios used at the underground facility real-time survey site and GPR exploration site were derived, and four sites in Seoul were tested to confirm that the use scenario worked properly. Through this, the on-site utilization of the program developed in this study could be confirmed, and it would contribute to the confirmation of the quality of Shape-file and the "update automation" of "Integration Map of Underground Goespatial Information". In addition, it is expected that the development program will be further applied to the Underground Facility Map's Accuracy Improvement Diffusion Project' promoted by the MOLIT (Ministry of Land, Infrastructure, and Transport).

Development of Underground Facilities Management System on Subway Construction (지하철공사를 위한 지하매설물관리시스템 개발)

  • 강인준;장용구;정영미
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 1997
  • In other to construct a subway, we have to consider the position of the subway and acquisition of a topography, profile-map, cross-map, underground facilities map. All information of underground is demanded accurate location in other to prevent of accident of underground in subway construction. We must think about water lines, sewer lines, electronic lines, telephone lines, all urban gas-line because these are needed construction the subway. And attributes of underground facilities recorded on topography are characteristics. length, width. number, position, and depth of the lines. We have to record these attributes because these are very important to design map on subway construction. If we develop GIS (Geographic Information System) to use the exact in-formation of the underground facilities, we can be management safely and prevent very dangerous accident as fast as possible. In this study, attribute informations are linked geographic informations about underground facilities and we can develop Underground Facilities Management System(UFMS) to analysis dangerous region through dangerous degreed and predict accident range with these informations.

  • PDF