• Title/Summary/Keyword: 지하수 관정

Search Result 263, Processing Time 0.026 seconds

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea (서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상)

  • Sang-Ho Moon;Yoon Yeol Yoon;Jin-Yong Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.671-687
    • /
    • 2022
  • It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.

Monitoring of Geothermal Systems Wells and Surrounding Area using Molecular Biological Methods for Microbial Species (분자생물학적 방법을 이용한 지열시스템 관정 및 주변지역 미생물종 모니터링)

  • Ahn, Chang-Min;Han, Ji-Sun;Kim, Chang-Gyun;Park, Yu-Chul;Mok, Jong-Koo;Jang, Bum-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.23-32
    • /
    • 2012
  • This study was conducted to monitor microbial species dynamics within the aquifer due to long term operation of geothermal heat pump system. The species were identified by molecular biological methods of 16S rDNA. Groundwater sample was collected from both open (S region) and closed geothermal recovery system (J region) along with the control. J measured and control as well as S measured found Ralstonia pickettii as dominant species at year 2010. In contrast, Rhodoferax ferrireducens was dominantly observed for the control of S. In 2011, Sediminibacterium sp. was universely identified as the dominant species regardless of the monitoring places and type of sample, i.e., measured or control. The difference in the dynamics between the measured and the control was not critically observed, but annual variation was more strikingly found. It reveals that possible environmental changes (e.g. ORP and DO) due to the operation of geothermal heat recovery system in aquifer could be more exceedingly preceded to differentiate annual variation of microbial species rather than positional differences.

Quantitative Evaluation for Improvement Effects of Performance After Mechanical Rehabilitation Treatments on Agricultural Groundwater Well (농업용 관정의 기계적 처리 이후 성능 개선 효과의 정량적 평가 사례)

  • Song, Sung-Ho;Lee, Byung-Sun;An, Jung-Gi
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.42-49
    • /
    • 2016
  • Step-drawdown pumping tests for identifying the improvement of groundwater well performance after rehabilitation treatments were conducted in three longstanding wells. Three selective mechanical treatment methods including power bubble, high-voltage electric pulse, and air surging were applied to these wells and the applicability of these methods to secure additional groundwater resources were evaluated quantitatively. Commonly, drawdown at final stage of stepdrawdown pumping tests after rehabilitation decreased by as much as 0.61~0.70 meters compared to those before rehabilitation. In addition, final specific drawdown values of three wells increased from 9% to 14% after rehabilitation. Formation loss coefficient and well loss coefficient decreased to 6.1% and 60.6%, respectively, indicating some clogging materials by precipitation/corrosion/microbe within pores of aquifer materials, gravel packs, and screens were effectively removed by applied methods. Decrease of formation loss coefficient was higher in the well applied by the power bubble method meanwhile high-voltage electric pulse method demonstrated the higher decrease of well loss coefficient. Additionally secured groundwater amounts after rehabilitation ranged from 23.3 to 32.1 m3/day, which account for 8~16% of initially developed pumping rates of the wells. From the results of this study, the effective selection of rehabilitation treatments considering aquifer characteristics are expected to contribute to secure groundwater resources for irrigation as well as to plan systematic management program for groundwater resources in rural area.

Establishment of an Optimal Rehabilitation Process for Agricultural Public Wells by Applying Standardized Diagnostic Functions (농어업용 공공관정 기능진단 표준화(안)을 이용한 최적 사후관리)

  • Lee, Byung Sun;Song, Sung-Ho;Park, Jeong-Keun;Won, Young-Cheon;Kim, Wonsuck
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • Rehabilitation for low-yielding wells resulting in improvement on groundwater quantity and quality is considered to be the most economic and ecofriendly method against the increasing demand to groundwater due to frequent drought and the increase in numbers of agricultural complex for growing horticultural crops. This study suggests standard, stepwise diagnostic fuctions consisting of four steps (Basic inspection, Specific inspection, Rehabilitation, and Management) for an optimal management to the wells. Basic inspection can provide information on current groundwater quantity and quality compared with those on its initial stage. Specific-inspection based on hydrogeology can scientifically demonstrate causes of deterioration on groundwater quantity and quality. Results of specific inspection can suggest an optimal rehabilitation method to solve deteriorating problems including clogging and corrosion for the wells. After rehabiliating the wells, an assessment on groundwater quantity and quality would be conducted to identify the suitability of the applied method and improvement of the wells. A short-term, periodic management to the wells is considered as the key to save a public management budget. Suggested diagnostic functions can possibly induce sustainable supply of agricultural groundwater to the farm land and finally contribute the increase on rural household income.

Effects of Selected Time on Analysis Results in Step-Drawdown Tests (단계양수시험 해석시 시간선택이 해석결과에 미치는 영향)

  • Lee Jin-Yong;Song Sung-Ho;Lee Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • Step-drawdown test has been generally conducted to evaluate productivity or efficiency of both aquifer and well. In general step-drawdown test, pumping with a low constant discharge rate is conducted in the first stage until the drawdown within the well stabilizes. And then the groundwater is pumped with a higher rate in the next step until the drawdown stabilizes once more. This process is repeated at least three times (steps), with the equal duration. In this paper we tried to review some critical problems related to the step-drawdown test, which were revealed in the process of field practices and analyses. The problems, referred in this paper are mainly associated with the incorrect conceptual approach for analysis and incomplete data collection in the field test.

Determination of Uranium in Groundwater by Instrumental Neutron Activation Analysis (중성자방사화분석에 의한 지하수중 우라늄의 정량)

  • 정용삼;문종화;정영주;박광원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.210-214
    • /
    • 1998
  • In general the concentration of uranium in natural water such as fresh water and sea water is in the range of 0.01∼5 ppb, therefore trace analytical technique is required. The aim of present work is to compare a direct and preconcentration methods by evaporation and to investigate rapid and accurate trace analysis of uranium in groundwater using Instrumental Neutron Activation Analysis (INAA) which are sensitive and nondestructive method. Identification of analytical procedure was carried out using uranium standard solution of the range of 0.5∼100 ppb. In the given concentration, the deviation of calibration curve was less than 2%, and the standard deviation of measured values at each concentration was the range of 2∼12%. The difference of U content with sampling time for the same sample site was about 10.3%. Using this established method, the concentrations of uranium in samples collected at the 17 spring of Choongchung areas were found to be in the range of 1∼80 ppb.

  • PDF

A plan on construction of irrigation facilities for agroforestry in DPRK (북한의 임농복합경영을 위한 관개시설 구축방안)

  • JI, Dallim;Kim, Kwanho;Choi, Kangwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.176-176
    • /
    • 2020
  • 본 연구는 북한의 식량난과 산림복구의 일환으로 추진되고 있는 임농복합경영의 현주소를 파악하고 북한의 임농복합경영이 가지는 대표적인 문제점이자 한국농어촌공사에서 접근할 수 있는 기술분야인 관개시설의 구축방안에 초점을 두어 해결방안을 모색하고자 하였다. 특히 임농복합경영 대상지의 경우, 산지를 개간하여 경사도 30° 이하의 경사지를 이용하고 있기 때문에 이 경우 토성이 사질 혹은 식질이 많아 보수력이 평지에 비해 크게 떨어지고 유효수분이 있는 토심도 낮기 때문에 가뭄 및 한발피해에 취약하다. 한발 시 관개를 위해 필요한 저수규모를 설정하기 위해서 강릉 안반데기와 영월 조전지구에서 산정한 단위용수량을 근거로 저수규모를 결정하였다. 계곡물이나 빗물은 자연흐름식 등의 방법으로 동력을 사용하지 않고도 집수할 수 있지만 하천이나 지하수를 퍼올려야 할 경우는 동력이 필수적으로 요구되기 때문에 대체에너지 활용을 고려하는 것이 필요하다. 따라서 임농복합경영을 위한 관개분야에 대한 대책으로 복합 취수원에 따라 하천, 지하수, 계곡, 빗물 등으로 구분하고 그에 따른 주요시설과 사업비를 산출하였다. 북한에서는 임농복합경영을 위한 경제성이 있는 규모로 50ha를 제안하고 있어 50ha규모의 임농복합경영 관수시설 부분에 대한 제안과 북한이 추진하고 있는 임농복합경영은 대부분 외부 지원에 의존하고 있기 때문에 지원의 용이성 및 가능성을 고려하여 10ha의 규모 역시 제안하였다. 50ha의 규모일 때 주요시설은 취수보, 양수장, 암반관정, 저수조, 물탱크, 송수관로, 급수관로, 급수대, 팜폰드, 둠벙, 배수로, 농로 등이며 수원공은 하천, 계곡, 지하수, 빗물이다. 동력은 태양광, 풍력으로 저수규모는 저수조에 2,000톤(40%여유수량), 팜폰드 및 둠벙에 800톤(60%여유수량)을 확보하였다. 10ha의 규모일 때 주요시설은 저수조, 물탱크, 급수관로, 팜폰드, 둠벙, 배수로, 농도 등이며 수원공은 빗물이다. 동력은 경사차를 이용한 자연흐름식 집수 방식으로 무동력이다. 본 연구는 향후 남북관계 개선시 우선 지원사업의 하나로 활용이 가능하다는데 의의가 있다. 50ha의 규모에 제시된 동인 태양광 및 풍력의 경우도 지속적인 유지관리 비용이 들지 않지만 초기 설치비가 높기 때문에 경제성이 있는 관개시스템을 개발할 필요가 있다.

  • PDF

Study of Geological Log Database for Public Wells, Jeju Island (제주도 공공 관정 지질주상도 DB 구축 소개)

  • Pak, Song-Hyon;Koh, Giwon;Park, Junbeom;Moon, Dukchul;Yoon, Woo Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.509-523
    • /
    • 2015
  • This study introduces newly implemented geological well logs database for Jeju public water wells, built for a research project focusing on integrated hydrogeology database of Jeju Island. A detailed analysis of the existing 1,200 Jeju Island geological logs for the public wells developed since 1970 revealed six major indications to be improved for their use in Jeju geological logs DB construction: (1) lack of uniformity in rock name classification, (2) poor definitions of pyroclastic deposits and sand and gravel layers, (3) lack of well borehole aquifer information, (4) lack of information on well screen installation in many water wells, (5) differences by person in geological logging descriptions. A new Jeju geological logs DB enabling standardized input and output formats has been implemented to overcome the above indications by reestablishing the names of Jeju volcanic and sedimentary rocks and utilizing a commercial, database-based input structured, geological log program. The newly designed database structure in geological log program enables users to store a large number of geology, well drilling, and test data at the standardized DB input structure. Also, well borehole groundwater and aquifer test data can be easily added without modifying the existing database structure. Thus, the newly implemented geological logs DB could be a standardized DB for a large number of Jeju existing public wells and new wells to be developed in the future at Jeju Island. Also, the new geological logs DB will be a basis for ongoing project 'Developing GIS-based integrated interpretation system for Jeju Island hydrogeology'.

Hydrogeochemical Evolution Related to High Fluoride Concentrations in Deep Bedrock Groundwaters, Korea (국내 심부 암반지하수에서의 고농도 불소 산출과 관련된 수리지구화학 진화)

  • Kim Kyoung-Ho;Yun Seong-Taek;Chae Gi-Tak;Kim Seong-Yong;Kwon Jang-Soon;Koh Yong-Kwon
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.27-38
    • /
    • 2006
  • To understand the geologic and hydrogeochemical controls on the occurrence of high fluoride concentrations in bedrock groundwaters of South Korea, we examined a total of 367 hydrochemistry data obtained from deep groundwater wells (avg. depth=600 m) that were drilled fur exploitation of hot springs. The fluoride concentrations were generally very high (avg. 5.65mg/L) and exceeded the Drinking Water Standard (1.5 mg/L) in $72\%$ of the samples. A significant geologic control of fluoride concentrations was observed: the highest concentrations occur in the areas of granitoids and granitic gneiss, while the lowest concentrations in the areas of volcanic and sedimentary rocks. In relation to the hydrochemical facies, alkaline $Na-HCO_3$ type waters had remarkably higher F concentrations than circum-neutral to slightly alkaline $Ca-HCO_3$ type waters. The prolonged water-rock interaction occurring during the deep circulation of groundwater in the areas of granitoids and granitic gneiss is considered most important for the generation of high F concentrations. Under such condition, fluoride-rich groundwaters are likely formed through hydrogeochemical processes consisting of the removal of Ca from groundwater via calcite precipitation and/or cation exchange and the successive dissolution of plagioclase and F-bearing hydroxyl minerals (esp. biotite). Thus, groundwaters with high pH and very high Na/Ca ratio within granitoids and granitic gneiss are likely most vulnerable to the water supply problem related to enriched fluorine.

Evaluation of Groundwater Quality Deterioration using the Hydrogeochemical Characteristics of Shallow Portable Groundwater in an Agricultural Area (수리지화학적 특성 분석을 이용한 농촌 마을 천부 음용지하수의 수질 저하 원인 분석)

  • Yang, Jae Ha;Kim, Hyun Koo;Kim, Moon Su;Lee, Min Kyeong;Shin, In Kyu;Park, Sun Hwa;Kim, Hyoung Seop;Ju, Byoung Kyu;Kim, Dong Su;Kim, Tae Seung
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.533-545
    • /
    • 2015
  • Spatial and seasonal variations in hydrogeochemical characteristics and the factors affecting the deterioration in quality of shallow portable groundwater in an agricultural area are examined. The aquifer consists of (from the surface to depth) agricultural soil, weathered soil, weathered rock, and bedrock. The geochemical signatures of the shallow groundwater are mostly affected by the NO3 and Cl contaminants that show a gradual downward increase in concentration from the upper area, due to the irregular distribution of contamination sources. The concentrations of the major cations do not varied with the elapsed time and the NO3 and Cl ions, when compared with concentrations in background groundwater, increase gradually with the distance from the upper area. This result suggests that the water quality in shallow groundwater deteriorates due to contaminant sources at the surface. The contaminations of the major contaminants in groundwater show a positive linear relationship with electrical conductivity, indicating the deterioration in water quality is related to the effects of the contaminants. The relationships between contaminant concentrations, as inferred from the ternary plots, show the contaminant concentrations in organic fertilizer are positively related to concentrations of NO3, Cl, and SO42− ions in the shallow portable groundwaters, which means the fertilizer is the main contaminant source. The results also show that the deterioration in shallow groundwater quality is caused mainly by NO3 and Cl derived from organic fertilizer with additional SO42− contaminant from livestock wastes. Even though the concentrations of the contaminants within the shallow groundwaters and the contaminant sources are largely variable, it is useful to consider the ratio of contaminant concentrations and the relationship between contaminants in groundwater samples and in the contaminant source when analyzing deterioration in water quality.