Hydrogeochemical Evolution Related to High Fluoride Concentrations in Deep Bedrock Groundwaters, Korea

국내 심부 암반지하수에서의 고농도 불소 산출과 관련된 수리지구화학 진화

  • Kim Kyoung-Ho (Department of Earth and Environmental Sciences and the Environmental Geosphere Research Lab(EGRL), Korea University) ;
  • Yun Seong-Taek (Department of Earth and Environmental Sciences and the Environmental Geosphere Research Lab(EGRL), Korea University) ;
  • Chae Gi-Tak (Department of Earth and Environmental Sciences and the Environmental Geosphere Research Lab(EGRL), Korea University) ;
  • Kim Seong-Yong (Korea Institute of Geoscience and Mineral Resources) ;
  • Kwon Jang-Soon (Department of Earth and Environmental Sciences and the Environmental Geosphere Research Lab(EGRL), Korea University) ;
  • Koh Yong-Kwon (Korea Atomic Energy Research Institute)
  • 김경호 (고려대학교 지구환경과학과 및 천부지권환경연구원) ;
  • 윤성택 (고려대학교 지구환경과학과 및 천부지권환경연구원) ;
  • 채기탁 (고려대학교 지구환경과학과 및 천부지권환경연구원) ;
  • 김성용 (한국지질자원연구원) ;
  • 권장순 (고려대학교 지구환경과학과 및 천부지권환경연구원) ;
  • 고용권 (한국원자력연구소)
  • Published : 2006.02.01

Abstract

To understand the geologic and hydrogeochemical controls on the occurrence of high fluoride concentrations in bedrock groundwaters of South Korea, we examined a total of 367 hydrochemistry data obtained from deep groundwater wells (avg. depth=600 m) that were drilled fur exploitation of hot springs. The fluoride concentrations were generally very high (avg. 5.65mg/L) and exceeded the Drinking Water Standard (1.5 mg/L) in $72\%$ of the samples. A significant geologic control of fluoride concentrations was observed: the highest concentrations occur in the areas of granitoids and granitic gneiss, while the lowest concentrations in the areas of volcanic and sedimentary rocks. In relation to the hydrochemical facies, alkaline $Na-HCO_3$ type waters had remarkably higher F concentrations than circum-neutral to slightly alkaline $Ca-HCO_3$ type waters. The prolonged water-rock interaction occurring during the deep circulation of groundwater in the areas of granitoids and granitic gneiss is considered most important for the generation of high F concentrations. Under such condition, fluoride-rich groundwaters are likely formed through hydrogeochemical processes consisting of the removal of Ca from groundwater via calcite precipitation and/or cation exchange and the successive dissolution of plagioclase and F-bearing hydroxyl minerals (esp. biotite). Thus, groundwaters with high pH and very high Na/Ca ratio within granitoids and granitic gneiss are likely most vulnerable to the water supply problem related to enriched fluorine.

국내 심부 암반지하수에서의 고농도 불소의 산출을 지배하는 지질 및 수리지구화학적 환경을 이해하고자, 온천 개발 목적으로 착정한 심부지하수 관정(평균 심도 약 600m)에서 취득된 총 367개의 지하수 분석 자료에 대하여 지구화학적 고찰을 수행하였다. 이들 지하수에서의 불소 농도는 매우 높아 평균 5.65mg/L에 이르며, 특히 연구 대상 지하수 중 $72\%$에서 먹는 물 수질기준(1.5mg/L)을 초과하였다. 불소 함량은 일차적으로 지질 조건의 지배를 강하게 나타냄을 확인하였는데 가장 높은 농도는 화강암류 및 화강편마암 지역에서 산출되는 반면 화산암 및 퇴적암 지역에서는 가장 낮았다. 지하수의 수리지구화학상과 관련하여 보면, 중성 내지 약알칼리성인 $Ca-HCO_3$형 지하수에 비하여 알칼리성의 $Na-HCO_3$형 지하수가 현저히 높은 불소 함량을 나타내었다. 화강암류 및 화강편마암 지역에서 지하수의 심부 순환에 수반되는 장기간의 물-암석 반응이 고농도 불소 산출의 가장 중요한 이유로 생각된다. 방해석 침전 또는 양이온교환에 의한 Ca 이온의 감소, 그리고 뒤따라 발생하는 사장석과 불소 함유 수산화광물(특히 흑운모)의 용해로 특징되는 일련의 수리지구화학 반응이 이러한 환경 하에서의 고불소 지하수 생성의 원인으로 해석된다. 따라서 불소과다에 의한 물 공급 문제의 발생 가능성은 높은 pH 및 매우 높은 Na/Ca농도비를 나타내는 화강암류 및 화강편마암 지역의 지하수에서 가장 높다고 볼 수 있다

Keywords

References

  1. 김건영, 고용권, 김천수, 배대석, 박맹언 (2000) 유성지역 지하수의 지구화학적 특성 연구. 지하수환경학회지, 7 권, p. 32-46
  2. 김규한, 최현정 (1998) 남한의 온천지역의 열수와 지하수 의 지구화학적 연구. 한국지구과학회지, 19권, p. 22-34
  3. 염병우 (1993) 화강암 내에 부존히는 지열수에 대한 환경 수리화학적 연구: 포천, 고성, 예산 및 중원지역을 중 심으로. 서울대학교 대학원 박사학위논문, 251p
  4. 염병우, 김용제 (1999) 수안보 지역의 온천수위 변동과 수 리지구화학에 관한 연구. 지하수환경학회지, 6권, p. 59-65
  5. 윤성택,채기탁,고용권,김상렬,최병영,이병호,김성용 (1998) 풍기 지역 지하수의 수리지구화학 및 환경동위 원소 특성 연구. 지하수환경, 5권, p. 177-191
  6. 정기영, 김강주, 김종용, 박재형, 이도형, 박순길 (2003) 포항경주지역 양산단층대 주변의 고불소 지하수 산출 특성. 지질학회지, 39권, p. 371-384
  7. 황정 (2001) 금주완주 지역 형석광화대내 석회암 및 화 강암 지역 지하수의 불소 분포특성 및 저감방안. 차원 환경지질, 34권, p. 105-117
  8. 황정 (2002) 황강리 형석 광화대내 석회암 및 화강함 지역 지하수의 지구화학적 특성. 한국지구과학회지, 23권, p. 486-493
  9. Adriano, D. C. (1986) Trace Elements in the Terrestrial Evironments. Springer-Verlag, New York, 553p
  10. Apambire, W. B., Boyle, D. R. and Michel, E A. (1997) Geochemistry, genesis and health implication of fluoriferous groundwater in the upper regions. Ghana. Environ. Geol, v. 33, p. 13-24 https://doi.org/10.1007/s002540050221
  11. Banks, D., Reimann, C., Royset, O., Skarphagen, H. and S, ether, O. M. (1995) Natural concentrations of major and trace elements in some Norwegian bedrock groundwaters. Appl. Geochem., v. 10, p. 1-16 https://doi.org/10.1016/0883-2927(94)00046-9
  12. Brownslow, A. H. (1996). Geochemistry, Prentice Hall, New Jersey; 580p
  13. Cabrera, A., Blarasin, M. and Villalba, G. (2001) Groundwater contaminated with arsenic and fluoride in the Argentine pampean Plain.J. Environ. Hydrol., v. 9, p. 9
  14. Carrillo-Rivera, J. J., Cardona, A. and Edmunds, W. M. (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosi basin, Mexico. Jour. Hydrol., v. 261, p. 24-47 https://doi.org/10.1016/S0022-1694(01)00566-2
  15. Chae, G. T., Yun, S. T, Kwon, M.J., Kim, Y. S. and Berne hard, M. (2005a) Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochem. Jour., in press
  16. Chae, G.T., Yun, S.T., Kim, K. and Mayer, B. (2005b) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing. Jour. Hydrol., in press (doi:10.1016/j.jhydrol.2005.08. 006)
  17. Choi, H. S., Koh, Y. K., Bae, D. S., Park , S. S., Hutcheon I, Yun, S. T. (2005) Estimation of deep reservoir temperature of C$O_{2}$ rich springs in Kangwon district, South Korea.Jour. Volcano!. Geotherm. Res., v. 141, p
  18. Choi, H. S. (2002) Hydrogeochemical and environmental isotope studies of C$O_{2}$-rich groundwaters in the Kangwon Province, Korea: Water-rock interaction, origin and evolution. Unpub. Ph. D. Thesis, Korea Univ., Seoul, 208 p77-89
  19. Chough, S.K. , Kwon, S,T,.Ree,J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, v. 52, p. 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  20. Correns, C. W. (1956) The geochemistry of the halogens, In Ahrens, Pergamon Press, p. 181-233
  21. Dowgiallo, J. (2000) Thermal water prospecting results at Jelenia Go'ra-Cieplice (Sudetes, Poland) versus geothermometric forecasts. Environ. Geol., v. 39, p. 433-436 https://doi.org/10.1007/s002540050449
  22. Evans, Jr., H. T. (1995) Ionic radii in crystals. CRC Handbook of Chemistry and Physics, 75th ed., p. 1913-1995
  23. Frengstad, B., Banks, D. and Siewers, U. (2001) The chemistry of Norwegian groundwaters: IV: The dependence of element concentrations in crystalline bedrock groundwaters. Sci. Total Environ., v. 277, p. 101-117 https://doi.org/10.1016/S0048-9697(00)00867-6
  24. Gascoyne, M. and Kamineni, D.C. (1994) The hydrogeochemistry of fractured plutonic rocks in the Canadian Shield. Appl. Hydrogeol., v. 2, p. 43-49 https://doi.org/10.1007/s100400050044
  25. Gizaw, B. (1996) The origin of high bicarbonate and fluoride concentration in waters of the Main Ethiopian Rift Valley, East African Rift system. J Afr. Earth Sci., v. 22, p. 391-402 https://doi.org/10.1016/0899-5362(96)00029-2
  26. Handa, B. K (1975) Geochemistry and genesis of fluoride containing groundwaters in India. Ground Water, v. 13(3), p. 275-281 https://doi.org/10.1111/j.1745-6584.1975.tb03086.x
  27. Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. Jour. Sci., v. 267, p. 279-804
  28. Hopkins, D. M. (1977) An improved ion-selective electrode method for the rapid determination of fluorine in rocks and soils. US Geol. Surv. Jour. Res., 5(5), p. 589-593
  29. Kanisiwa, S. (1979) Content and behavior of fluorine in granitic rocks, Kitakami Mounations, Northest Japan. Chern. Geol., v. 24, p. 57-67 https://doi.org/10.1016/0009-2541(79)90012-3
  30. Kim, K and Jeong, G. Y. (2005) Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula. Chemosphere, v. 58, p. 1399-1408 https://doi.org/10.1016/j.chemosphere.2004.10.002
  31. Koritnig, S. (1972) Handbook of Geochemistry (v. II/I). Berlin, Springer-Verlag, 9B-90
  32. Lahermo, P., Ilmasti, M., Juntunen, R. and Taka, M. (1990) The hydrogeochemical mapping of Finnish groundwaters. The Geochemical Atlas of Finland, Part 1, Geol. Surv. Finland, 66p
  33. Li, Z., Tainosho, Y., Shiraishi, K, Owada, M. (2003) Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the S$\phi$r Rondane Mountains, East Antarctica. Geochem. J, v. 37, p. 145-161
  34. Manahan, S. E. (1994) Environmental Chemistry, 6th ed., Lewis Publishers, Florida, USA, 811p
  35. Nordstrom, D. K, Ball, J w., Donahoe, R. J and Whittemore, D. (1989) Groundwater chemistry and waterrock interaction at Stripa. Geochim. Cosmochim. Acta, v. 53, p. 1727-1740 https://doi.org/10.1016/0016-7037(89)90294-9
  36. Park, S. C., Yun, S. T., Chae, G. T., Yoo, I. S., Shin, K S., Heo, C. H., Lee, S. K (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Jour. Hydrol., v. 313, p. 182-194 https://doi.org/10.1016/j.jhydrol.2005.03.001
  37. Parkhurst, D. L. and Appelo, C. A. J (1999) User's guide to phreeqc (version 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigation Report 994259, Denver; Colorado, 312p
  38. Pertti, L. and Birgitta, B. (1995) The occurrence and geochemistry of fluorides with special reference to natural waters in Finland. Geo!. Surv. Finland, Report of Investigation 128
  39. Rankama, K and Sahama, Th. G. (1950) Geochemistry, The University of Chicago press, Chicago, Illinois, USA, 912p
  40. Turekian, K K and Wedepohl, K H. (1961) Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull., v. 71(2), p. 175-191
  41. WHO(World Health Organization) (1994) Fluorides and oral health. World Health Organization Technical Report Series 846, Geneva