• Title/Summary/Keyword: 지하수면 하부

Search Result 22, Processing Time 0.02 seconds

Ground Penetrating Radar Profiling of an Unconfined Aquifer for Estimating the Groundwater Surface (지하투과레이다를 이용한 비피압대수층의 지하수면 추정)

  • Park, Inchan;Kim, Jitae;Cho, Woncheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1173-1177
    • /
    • 2004
  • 현재 다양한 분야에서 널리 사용되고 있는 지하투과레이더(Ground Penetrating Radar, GPR)를 이용하여 지하수면 및 함수량을 추정하였다. 비피압대수층 내에서의 얕은 포화대(saturated zone) 깊이을 산정하는 연구(livari and Doolittle, 1994, van Overmeeren, 1994)와 포화대 상부 습윤대(wetting fronts)의 거동를 조사한 연구(Vellidis et al, 1990) 등에 활용된 바 있는 GPR 기숙을 바탕으로 비피압대수층의 통기대와 포화대 내의 함수량 및 지하수면 추정을 위한 기초 실험을 수행하였다. 지하수면 및 함수량의 현장 적용성을 검증하기 위해서는 시간과 경제적인 면에서 비효율적인 점을 고려하여 사질토로 구성된 실험용 토조를 제작하여 건조시 획득된 GPR 자료, 지하수면의 변화에 따른 GPR 이미지를 비교하여 그 적용성을 검토하고 시${\cdot}$공간적 지하수면의 정확한 추정을 위해서 삼차원으로 비교${\cdot}$검토할 수 있도록 하였으며, GPR 자료의 정확성을 검증하기 위해서 토조 하부에 액주계(piezometer)를 설치하였다. 본 연구에서 적용된 GPR 실험은 획득된 이미지의 해석에 다소 어려움이 있지만 토양을 교란시키지 않고 비교적 간편하게 함수랑 및 지하수면의 위치를 파악하는데 매우 효과적이며, 추가적으로 GPR을 이용한 다양한 실험이 수행된다면 GPR 기술은 향후 기존 방법에서 쉽게 판단하기 어려운 시${\cdot}$공간적인 함수량 및 지하수의 분포 특성을 효율적으로 파악하는데 매우 큰 도움을 줄 수 있을 것이다.

  • PDF

A Comparative Study of Density Compensation in Gamma-Gamma Log in PVC Casings between above and below Ground Water Tables (지하수면 상.하부 환경에서의 PVC 케이싱 이격보정 비교 연구)

  • Kim, Yeong-Hwa;Hwang, Byong-Chol;Park, Sung-Geun;Kim, Jong-Man
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2009
  • A series of model borehole experiments and analyses for density compensation were performed to achieve the effective density correction of gamma-gamma log obtained from PVC cased boreholes. A follow-up survey was made for clarifying the variation property of detector responses depending on casing types, the presence of borehole fluid, and the degree of separation between probe and borehole wall. A special emphasis was placed on the comparison of gamma responses obtained from above and below ground water tables. Finally, we could quantify the detector responses as a function of separation between the probe and borehole wall, construct standoff compensation charts, and the limitations of the compensation have been discussed for the environments of both above and below ground water tables.

자유면대수층내 포화대와 비포화대에서의 수리분산특성 연구

  • 강동환;정상용;이민희;김병우;이승엽;손주형
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.168-171
    • /
    • 2003
  • 연속주입추적자시험이 실시된 현장사이트의 규모는 4.5m$\times$4.5m$\times$6.0m 정도이다. 시험 사이트내에서 실시된 추적자시험은 주입공(Pl)에서 Rhodamine WT 50ppm 용액을 1.8$\ell$/min의 주입율로 6일 동안 연속적으로 주입함과 동시에 관측공(P2, P3, Il, I2, I3)에서 일정한 시간간격으로 지하수를 채수하여 추적자농도를 산출하였다. 시험결과, 지하수면 하부를 포함하는 관측공(P2, P3)의 최대추적자농도는 초기주입농도의 10% 정도이며, 지하수면 상부에 위치한 지하수공(Il, I2, I3)들에서의 최대추적자농도는 초기농도의 75% 정도로서 추적자의 농도차이가 상대적으로 매우 크게 나타났다. 본 연구에서는 자유면대수층내에서 포화대를 포함한 관측공과 비포화대만을 포함한 관측공에서의 수리분산특성에 대해 비교.분석한 결과, 오염물이 연속적으로 토양에 유입되는 경우 비포화대 구간에서는 이류기작에 의한 농도희석이 거의 없으므로 오염물농도가 매우 클 것으로 판단된다.

  • PDF

Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer (만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과)

  • Choi, Beom-Kyu;Koh, Dong-Chan;Ha, Kyoo-Chul;Cheon, Su-Hyun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.29-45
    • /
    • 2007
  • Biogeochemical characteristics involving redox processes in groundwater from a riverine alluvial aquifer was investigated using multi-level monitoring wells (up to 30m in depth). Anaerobic conditions were predominant and high Fe ($14{\sim}37mg/L$) and Mn ($1{\sim}4mg/L$) concentrations were observed at 10 to 20 m in depth. Below 20 m depth, dissolved sulfide was detected. Presumably, these high Fe and Mn concentrations were derived from the reduction of Fe- and Mn-oxides because dissolved oxygen and nitrate were nearly absent and Fe and Mn contents were considerable in the sediments. The depth range of high Mn concentration is wider than that of high Fe concentration. Dissolved organics may be derived from the upper layers. Sulfate reduction is more active than Fe and Mn reduction below 20 m in depth. Disparity of calculated redox potential from the various redox couples indicates that redox states are in disequilibrium condition in groundwater. Carbonate minerals such as siderite and rhodochrosite may control the dissolved concentrations of Fe(II) and Mn(II), and iron sulfide minerals control for Fe(II) where sulfide is detected because these minerals are near saturation from the calculation of solubility equilibria.

Ground penetrating radar testing in a sand tank for detection of buried pipes (매설파이프 감지를 위한 지하 투과 레이다 모래 모형조 실험)

  • Kim, Hyeong Su
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 1998
  • Ground penetrating radar (GPR) experiments were performed in a sand tank to study the ability of detection of buried pipes and to characterize the signal of the reflection wave. The ratios of diameter of buried pipes to the depth were set 4 up to 24 % and materials were metal, synthetic resin, and wood. In case of groundwater table below buried materials, strong reflection signals were observed irrespective of diameter and depth except for wood. While it is very difficult to detect the reflection signals in case that the groundwater table is set to higher than buried materials. The reflection signals from the bottom of the sand tank, however, were clearly observed even in case of higher groundwater table. This implies that the weak reflection signals from the buried materials are not all due to the wave attenuation. The vertical reflection profiling method is recommended in case that the object of the survey is to find horizontal position of buried material because this method has the advantage in cost and time of survey. However, the full or partial CMP gather method is recommended in case that the objects of the survey are to get the detailed subsurface information, i.e. the depth to buried material, interval velocity of geological layer, and mapping the groundwater table.

  • PDF

Physio-chemical and Mineralogical Characterization of the Tailings in the Guryoung Mining Area (구룡광산 광미층의 심도변화에 따른 물리.화학적 및 광물학적 특성)

  • Moon, Yong-Hee;Kim, Jeong-Yeon;Song, Yun-Goo;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.183-199
    • /
    • 2008
  • This study is focused on characterization of the physio-chemical and mineralogical properties, investigation of their vertical changes in the tailing profile of the Guryoung mining area, classification of the profile into distinct zones, and condition conceptual model of physio-chemical conditions and phases-water relationships controlling the element behaviors in the tailings. The upper part of the groundwater is characterized by the high contents of $Fe_2O_3$ and $SO_3$ for whole rock analysis, low pH, and the occurrence of jarosite, schwertmannite and Fe-oxyhydroxide as the secondary mineral phases. The tailing profile can be divided into the covering soil, jarosite zone, Fe-sulfate zone, Fe-oxyhydroxide and gypsum-bearing pyrite zone, calcite-bearing pyrite zone, soil zone, and weathered zone on the based of the geochemical and mineralogical characteristics. The profile can be sampled into the oxidized zone and the carbonate-rich primary zone with the dramatic changes in pH and the secondary mineral phases. The conceptual model proposed for the tailing profile can be summarized that the oxidation of pyrite is the most important reaction controlling the changes in pH, the dissolution of the primary silicates and carbonates, the precipitation of secondary mineral phases, acid-neutralizing, and heavy metal behaviors through the profile.

Geophysical Imaging of Alluvial Water Table and the underlying Layers of Weathered and Soft Rocks (충적층 지하수면 및 그 하부의 풍화암/연암의 경계면 파악을 위한 복합 지구물리탐사)

  • Ju, Hyeon-Tae;Lee, Chul-Hee;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Although geophysical methods are useful and generally provide valuable information about the subsurface, it is important to recognize their limitations. A common limitation is the lack of sufficient contrast in physical properties between different layers. Thus, multiple methods are commonly used to best constrain the physical properties of different layers and interpret each section individually. Ground penetrating radar (GPR) and shallow seismic reflection (SSR) methods, used for shallow and very shallow subsurface imaging, respond to dielectric and velocity contrasts between layers, respectively. In this study, we merged GPR and SSR data from a test site within the Cheongui granitic mass, where the water table is ~3 m deep all year. We interpreted the data in combination with field observations and existing data from drill cores and well logs. GPR and SSR reflections from the tops of the sand layer, water table, and weathered and soft rocks are successfully mapped in a single section, and they correlate well with electrical resistivity data and SPS (suspension PS) well-logging profiles. In addition, subsurface interfaces in the integrated section correlate well with S-wave velocity structures from multi-channel analysis shear wave (MASW) data, a method that was recently developed to enhance lateral resolution on the basis of CMP (common midpoint) cross-correlation (CMPCC) analysis.

Spine and Ribs Techniques for Practical use of Standoff Compensation in a Density Log (밀도검층 이격보정 실용화를 위한 Spine and Ribs 기법 연구)

  • Han, Manho;Kim, Yeonghwa;Yi, Myeong-Jong;Kim, Jongman
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.39-48
    • /
    • 2018
  • We carried out the standoff compensation data from 2007 to 2011 into four different density borehole models to find out the most effectiveness of standoff compensation charts. First, we investigated the irregular collapse characteristics of gamma ray and cut the non-ideal gamma response to improve the effectiveness of the standoff compensation error data. Effectiveness of detector combinations, density of borehole, and spine and ribs techniques from the modified standoff compensation data was analyzed. As the result of comparison, LSD-MSD combination has been suitable for standoff compensation more than LSD-SSD combination and it is possible to do standoff compensation for soil or weathered zone under groundwater level without fatal errors. Even though error scales of density transformed spine and ribs techniques were generally large compared to the conventional standoff compensation, standoff compensation for soil and weathered zone under groundwater level were sufficiently effective.

Analysis of Ground Subsidence on Gyochon Residential Region of Muan City (무안 교촌리주거지역 지반침하 안정성 분석)

  • Han, Kong-Chang;Cheon, Dae-Sung;Ryu, Dong-Woo;Park, Sam-Gyu
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.66-74
    • /
    • 2007
  • The analysis of ground subsidence stability was conducted for the residential area located on the limestone corrosion zone. For the investigation of the cavity distribution in limestone region, various geophysical investigations such as electroresistivity tomography, electromagnetic prospecting are carried out. Geotechnical field tests with drilling are also carried out for the evaluation of the ground characteristics. Based upon their results, numerical modeling is performed for the simulation and prediction of the ground subsidence with the conditions of cavity geometry and groundwater level. The main factor to cause the ground subsidence is estimated as the draw down of the groundwater level below soil overburden, which disturbs the mechanical equilibrium of ground and drives washing away the overburden soil through the cavity and solace subsidence. It seemed that it is essential to maintain the groundwater level continuously above the shallow cavity for the prevention of the ground subsidence on the limestone corrosion zone.

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.