Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer

만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과

  • 최범규 (한국지질자원연구원 지하수지열연구부) ;
  • 고동찬 (한국지질자원연구원 지하수지열연구부) ;
  • 하규철 (한국지질자원연구원 지하수지열연구부) ;
  • 전수현 (한국지질자원연구원 지하수지열연구부)
  • Published : 2007.02.28

Abstract

Biogeochemical characteristics involving redox processes in groundwater from a riverine alluvial aquifer was investigated using multi-level monitoring wells (up to 30m in depth). Anaerobic conditions were predominant and high Fe ($14{\sim}37mg/L$) and Mn ($1{\sim}4mg/L$) concentrations were observed at 10 to 20 m in depth. Below 20 m depth, dissolved sulfide was detected. Presumably, these high Fe and Mn concentrations were derived from the reduction of Fe- and Mn-oxides because dissolved oxygen and nitrate were nearly absent and Fe and Mn contents were considerable in the sediments. The depth range of high Mn concentration is wider than that of high Fe concentration. Dissolved organics may be derived from the upper layers. Sulfate reduction is more active than Fe and Mn reduction below 20 m in depth. Disparity of calculated redox potential from the various redox couples indicates that redox states are in disequilibrium condition in groundwater. Carbonate minerals such as siderite and rhodochrosite may control the dissolved concentrations of Fe(II) and Mn(II), and iron sulfide minerals control for Fe(II) where sulfide is detected because these minerals are near saturation from the calculation of solubility equilibria.

전라북도 전주시 지역의 만경강 하천변 충적 대수층에 심도 30m까지 설치된 다중 심도 관정을 이용하여 산화-환원 환경과 관련된 지하수의 생물지구화학적 특성을 조사하였다. 대체로 용존 산소(DO)가 1 mg/L이하의 혐기성 환경이 지배적이었으며, 10-20m 구간에서는 높은 농도의 Fe($14{\sim}37mg/L$)와 Mn($1{\sim}4mg/L$)이 나타나고 그 하부에서는 S(-II) 이온이 검출되었다. 용존 Fe와 Mn이 높은 구간에서는 $O_2,\;NO_3$가 거의 없고, 퇴적물내의 Fe와 Mn의 함량은 심도에 따라 큰 차이 없이 분포하고 있어 전자수용체로서 이용된 Fe(III), Mn(IV)의 환원에 의해 지하수내의 용존 Fe와 Mn의 농도가 높아진 것으로 볼 수 있다. 용존 농도에서 Mn이 Fe에 비해 상대적으로 농도가 높게 나타나는 구간이 더 넓다. 환원 과정에서 전자공여체(electron donor)로 이용될 수 있는 유기 탄소(DOC) 농도가 지하수면 부근에서 급격히 감소하는 것으로 보아 지하수내 유기물은 상부에서 유입되는 것으로 보인다. 20m 하부에서는 $SO_4$가 감소하고 S(-II) 이온이 검출되는 것으로 보아 상부 구간보다는 하부구간에서 $SO_4$ 환원작용이 활발함을 지시한다. 여러 산화-환원쌍으로부터 계산된 산화-환원 전위는 Fe를 포함하는 쌍들간을 제외하고는 모두 일치하지 않아 전체적으로 산화-환원적으로 비평형 상태에 있다고 볼 수 있다. 지하수면 부근을 제외하고는 siderite, rhodochrosite 등의 탄산염 광물의 포화지수가 -2에서 +1의 범위를 보여 이들 광물에 의해 각각 Fe(II), Mn(II) 이온의 농도가 지하수내에서 조절될 수 있음을 보여주며, 20m 하부 심도 구간에서 S(-II) 이온이 검출되는 지점에서는 Fe(II)의 경우 FeS 광물에 의해서도 농도가 조절될 수 있다.

Keywords

References

  1. Albrechtsen, H.-J., Bjerg, P.L., Ludvigsen, L., Rugge, K. and Christensen, T.H. (1999) An anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark. 2. Deduction of anaerobic (methanogenic, sulfate-, and Fe(III)- reducing) redox conditions. Water Resources Research, v. 53, p. 1247-1256
  2. American Public Health Association (1999) Standard Methods for the Examination of Water and Wastewater. 20th ed., 1325p
  3. Amirbahman, A., Schonenberger, R., Furrer, G. and Zobrist, J. (2003) Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material. Journal of Contaminant Hydrology, v. 64, p. 169-190 https://doi.org/10.1016/S0169-7722(02)00151-1
  4. Ball, J.W. and Nordstrom, D.K. (1991) User's manual for WATEQ4f, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. US. Geol. Surv. Open-File Rep. p. 91-183
  5. Ben-Dor, E. and Banin, A. (1989) Determination of organic matter content in arid-zones soils using simple 'loss-on-ignition' method. Commun. Soils Sci. Plant Anal, v. 20, p. 1675-1695 https://doi.org/10.1080/00103628909368175
  6. Bourg, A.C.M. and Bertin, C. (1994) Seasonal and spatial trends in manganese solubility in an alluvial aquifer. Environmental Science & Technology, v. 28, p. 868-876 https://doi.org/10.1021/es00054a018
  7. Brown, C.J., Schoonen, M.A.A. and Candela, J.L. (2000) Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer. Journal of Hydrology, v. 237, p. 147-168 https://doi.org/10.1016/S0022-1694(00)00296-1
  8. Chae G.-T., Kim K., Yun S.-T., Kim K.-H., Kim S.-O., Choi B.-Y., Kim H.-S. and Rhee C.W. (2004) Hydrogeochemistry of alluvial groundwaters in an agricultural area: An implication for groundwater contamination susceptibility. Chemosphere, v. 55, p. 369-378 https://doi.org/10.1016/j.chemosphere.2003.11.001
  9. Chapelle, F.H. and Lovley, D.R. (1992) Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria; a mechanism for producing discrete zones of high-iron ground water. Ground Water, v. 30, p. 29-36 https://doi.org/10.1111/j.1745-6584.1992.tb00808.x
  10. Christensen, T.H., Bjerg, P.L., Banwart, S.A., Jakobsen, R., Heron, G. and Alberchtsen, H.-J., (2000) Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, v. 45, p. 165-241 https://doi.org/10.1016/S0169-7722(00)00109-1
  11. Grenthe, I., Stumm, W., Laaksuharju, M., Nilsson, A.C. and Wikberg, P. (1992) Redox potentials and redox reactions in deep groundwater systems. Chemical geology, v. 98, p. 131-150 https://doi.org/10.1016/0009-2541(92)90095-M
  12. Groffman, A.R. and Crossey, L.J. (1999) Transient redox regimes in a shallow alluvial aquifer. Chemical Geology, v. 161, p. 415-442 https://doi.org/10.1016/S0009-2541(99)00119-9
  13. Ha, K., Ko, K-S, Koh, D-C, Yum, B.-W. and Lee, K-K (2006) Time series analysis of the responses of the groundwater levels at multi-depth wells according to the river stage fluctuations. Econ. Environ. Geol., v. 39, p. 269-284
  14. Hem, J.D. (1985) Study and interpretation of the chemical characteristics of natural water. US Geological Survey Water-Supply Paper, 2254, 264
  15. Heron G., Crouze C., Bourg A.C.M. and Christensen T.H. (1994) Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environmental Science and Technology, v. 28, p. 1698-1705 https://doi.org/10.1021/es00058a023
  16. Hyun, S-G, Woo, N-C, Shin, W. and Hamm, S-Y (2006) Characteristics of groundwater quality in a riverbank filtration area. Econ. Environ. Geol., v. 39, p. 151-162
  17. Jacobs, L.A., von Gunten, H.R., Keil, R. and Kuslys, M. (1988) Geochemical changes along a river-ground-water infiltration flow path: Glattfelden, Switzerland. Geochimica Cosmochimica Acta, v. 52, p. 2693-2706 https://doi.org/10.1016/0016-7037(88)90038-5
  18. Jakobsen, R. and Postma, D. (1999) Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer; Romo, Denmark. Geochimica Cosmochimica Acta, v. 63, p. 137-15l https://doi.org/10.1016/S0016-7037(98)00272-5
  19. Kim, G.-Y., Koh, Y.-K., Kim, C.-S., Kim, H.-S. and Kim, S.-Y. (2003) Geochemical study on the alluvial aquifer system of the Nakdong River for the estimation of river bank filtration. The Journal of Engineering Geology, v. 13, p. 83-105
  20. Korfali, S.I. and Davies, B.E. (2004) The relationships of metals in river sediments (Nahr-Ibrahim, Lebanon) and adjacent floodplain soils. Agricultural Engineering International: The CIGR Journal of Scientific Research and Development. vol. VI, p. 1-22
  21. Langmuir, D. (1997) Aqueous Environmental Geochemistry. Prentice-Hall, Englewood Cliffs, NJ, 600p
  22. Lee, B.-J., Kim, J.-C., Kim, Y.-B., Cho, D.-R., Choi, H.-I., Cheon, H.-Y. and Kim, B.-C. (1997) The Gwangju Sheet (1:250,000). Korea Institute of Geology and Mineral Resources
  23. Lovley, D.R. (1991) Dissimilatory Fe (III) and Mn(IV) reduction. Microbiology Review, v. 55, p. 259-287
  24. Lovley, D.R. and Phillips, E.J.P. (1987) Competitive mechanism for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Applied Environmental Microbiology, v. 53, p. 2636-264l
  25. Lovley, D.R. and Phillips, E.J.P. (1988a) Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiology Journal, v. 6, p.145-155 https://doi.org/10.1080/01490458809377834
  26. Lovley, D.R. and Phillips E.J.P. (1988b) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied & Environmental Microbiology, v. 54, p. 1472-1480
  27. Ludvigsen, L., Albrechtsen, H.-J., Heron, G., Bjerg, P.L. and Christensen, T.H. (1998) Anaerobic microbial redox processes in a landfill leachate contaminated aquifer. Journal of Contaminant Hydrology, v. 33, p. 273-291 https://doi.org/10.1016/S0169-7722(98)00061-8
  28. Lyngkilde, J. and Christensen, T.H. (1992) Redox zones of a landfill leachate pollution plume (Vejen, Denmark). Journal of Contaminant Hydrology, v. 10, p. 273-289 https://doi.org/10.1016/0169-7722(92)90011-3
  29. Massmann, G., Pekdeger, A. and Merz, C. (2004) Redox processes in the Oderbruch polder groundwater flow system in Germany. Applied Geochemisty, v. 19, p. 863-886 https://doi.org/10.1016/j.apgeochem.2003.11.006
  30. Nicholson, R.Y., Cherry, J.A. and Reardon, E.J. (1983) Migration of contaminants in groundwater at a landfill: a case study, 6. Hydrogeochemistry (Borden landfill). Journal of Hydrology, v. 63, p. 131-176 https://doi.org/10.1016/0022-1694(83)90226-3
  31. Parkhurst, D.L. and Appelo, C.A.J. (1999) User's guide to PHREEQC (version 2) - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. WRI 99-4259. U.S. Geological Survey, Denver, 312 p
  32. Parks, S.J. and Baker, L.A. (1997) Sources and transport of organic carbon in an Arizona river-reservoir system. Water Research, v. 31, p. 1751-1759 https://doi.org/10.1016/S0043-1354(96)00404-6
  33. Stefansson A., Arnorsson S. and Sveinbjornsdottir A.E. (2005) Redox reactions and potentials in natural waters at disequilibrium. Chemical Geology, v. 221, p. 289-311 https://doi.org/10.1016/j.chemgeo.2005.06.003
  34. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry, 3rd ed. Wiley, New York
  35. Tesoriero, A.J., Spruill, T.B. and Eimers, J.L. (2004) Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: Implications for aquifer susceptibility. Applied Geochemistry, v. 19, p. 1471-1482 https://doi.org/10.1016/j.apgeochem.2004.01.021
  36. Thornton, S.F., Quigley, S., Spence, M.J., Banwart, S.A., Bottrell, S. and Lerner, D.N. (2001) Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer. Journal of Contaminant Hydrology, v. 53, p. 233-267 https://doi.org/10.1016/S0169-7722(01)00168-1
  37. Thurman, E.M. (1985) Organic Geochemistry of Natural Waters. Dordrecht, Netherlands: Marinus Nijhoff
  38. Ure, A.M. and Berrow, M.L. (1982) The elemental constituents of soils. In: Environmental Chemistry Vol. 2, Royal Society of Chemistry, p. 94-204
  39. Von Gunten, H.R., Karametaxas, G.,and Kell, R. (1994) Chemical processes in infiltrated riverbed sediments. Environmental Science and Technology, v. 28, p. 2087-2093 https://doi.org/10.1021/es00061a017
  40. Wang, X., Chen, R.F. and Gardner, G.B. 2004. Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico. Marine Chemistry 89, p. 241-256 https://doi.org/10.1016/j.marchem.2004.02.014