Physio-chemical and Mineralogical Characterization of the Tailings in the Guryoung Mining Area

구룡광산 광미층의 심도변화에 따른 물리.화학적 및 광물학적 특성

  • Moon, Yong-Hee (Institute of Earth.Atmosphere.Astronomy BK21 Yonsei University) ;
  • Kim, Jeong-Yeon (Halla Engineering & Construction Corp. Research & Development Center) ;
  • Song, Yun-Goo (Department cf Earth System Sciences, Yonsei University) ;
  • Moon, Hi-Soo (Department cf Earth System Sciences, Yonsei University)
  • 문용희 (연세대학교 BK21 지구.대기.천문사업단) ;
  • 김정연 (한라건설 기술연구소) ;
  • 송윤구 (연세대학교 지구시스템과학과) ;
  • 문희수 (연세대학교 지구시스템과학과)
  • Published : 2008.04.28

Abstract

This study is focused on characterization of the physio-chemical and mineralogical properties, investigation of their vertical changes in the tailing profile of the Guryoung mining area, classification of the profile into distinct zones, and condition conceptual model of physio-chemical conditions and phases-water relationships controlling the element behaviors in the tailings. The upper part of the groundwater is characterized by the high contents of $Fe_2O_3$ and $SO_3$ for whole rock analysis, low pH, and the occurrence of jarosite, schwertmannite and Fe-oxyhydroxide as the secondary mineral phases. The tailing profile can be divided into the covering soil, jarosite zone, Fe-sulfate zone, Fe-oxyhydroxide and gypsum-bearing pyrite zone, calcite-bearing pyrite zone, soil zone, and weathered zone on the based of the geochemical and mineralogical characteristics. The profile can be sampled into the oxidized zone and the carbonate-rich primary zone with the dramatic changes in pH and the secondary mineral phases. The conceptual model proposed for the tailing profile can be summarized that the oxidation of pyrite is the most important reaction controlling the changes in pH, the dissolution of the primary silicates and carbonates, the precipitation of secondary mineral phases, acid-neutralizing, and heavy metal behaviors through the profile.

본 연구에서는 구룡광산에 적치된 광미층으로 부터 채취된 대표 비교란 코어시료를 대상으로 체계적인 물리 화학적 및 광물학적 특성을 심도별로 정량적으로 파악, 중금속 거동 핵심 영향요소를 기준으로 광미층 수직분대를 시도하고, 이를 기초로 광미층 비포화대-포화대에 걸친 원소 거동과 지화학적 조건과의 상관모델을 제시하고자 한다. 구룡광산의 대상 광미층은 화학적으로 지하수면을 경계로 상부층 구간에서의 낮은 pH(4)와 20wt.% 이상의 높은 $Fe_2O_3$$SO_3$ 함량에 의해 특징지어진다. 물리 화학적 및 광물학적 분석 자료를 고려하여 구룡광산 광미층을 심도증가에 따라 복토층, jarosite zone, Fe-sulfate zone, Fe-oxyhydroxide zone, gypsum-bearing pyrite zone, calcite-bearing pyrite zone, soil zone(광미층 집적 이전 토양층), weathered zone 등 7개분대로 구분할 수 있으며, 새로 생성된 이차광물상의 특성을 고려할 때 지하수면을 기준으로 상부층을 산화대(oxidation zone)로, 하부층을 비산화대(unoxidation zone), 혹은 carbonate-rich primary zone으로 크게 대분할 수 있다. 본 연구결과를 기초로 구룡광산 광미층의 물리 화학적 및 광물학적 변화를 지하수면 상부층에서의 황화광물, 특히 황철석의 산화반응이 핵심요소가 되어, 이로 인한 pH 값의 감소, 일차광물의 용해반응 및 원소 용출, 이차광물상 생성, 그리고 생성된 산의 탄산염 및 규산염광물에 의한 산-중화반응 등 일련의 지화학적 반응으로 설명할 수 있다.

Keywords

References

  1. Al, T.A., Blowes, D.W., Martin, C.J., Cabri, L.J. and Jambor, J.L. (1997) Aqueous geochemistry and analysis of pyrite surfaces in sulfide-rich mine tailings. Geochim. et Cosmochim. Acta, v.66, p.2353-2366
  2. Alpers, C.N. and Nordstrom, D.N. (1990) Stoichiometry of mineral reactions from mass balance computations of acid mine waters, Iron Mountain, California, in Geological Association of Canada/Mineralogical Association of Canada joint meeting eds., Acid mine drainage- designing for closure. Vancouver, p.23-33
  3. Bernhard, D. and Luluis, F. (2000) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. Journal of Geochemical Exploration, v.74, p.3-55 https://doi.org/10.1016/S0375-6742(01)00174-1
  4. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M. (1996) Schwertmannit and the chemical modeling of iron in acid sulfate waters. Geochim. et Cosmochim. Acta, v.60, p.2111-2121 https://doi.org/10.1016/0016-7037(96)00091-9
  5. Blowes, D.W. and Jambor, J.L. (1990) The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Applied Geochemistry, v.5, p.327-346 https://doi.org/10.1016/0883-2927(90)90008-S
  6. Brown, J.G., Bassett, R.L. and Glynn, P.D. (1998) Analysis and simulation of reactive transport of metal contaminants in ground water in Pinal Creek Basin, Arizona. Journal of Hydrology, v.209, p.225-250 https://doi.org/10.1016/S0022-1694(98)00091-2
  7. Dubrovsky, N.M., Cherry, J.A., Reardon, E.J. and Vivyurka, A.J. (1984) Geochemical evolution of inactive pyritic tailings in the Elliot Lake uranium district. Canadian Geotechnical Journal, v.22, p.110-128 https://doi.org/10.1139/t85-011
  8. Giere R., Sidenko, N.V. and Lazareva, E.V. (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, v.18, p.1347-1359 https://doi.org/10.1016/S0883-2927(03)00055-6
  9. Hounslow, A.H. (1995) Water quality data. CRC Press
  10. Jambor, J.L. (1994) Mineralogy of sulfide-rich tailings and their oxidation products. In: Jambor, J.L., Blowes, D.W. (ed) Environmental Geochemistry of Sulfide Minewastes. Mineralogical Association Canada, Short Course Handbook, v.22, p.59-102
  11. Jurjovec, J., Ptacer, C.J. and Blowes, D.W. (2002) Acid neutralization mechanisms and metal release in mine tailings: A laboratory column experiment. Geochim. et Cosmochim. Acta, v.66, p.1511-1523 https://doi.org/10.1016/S0016-7037(01)00874-2
  12. Kim, W.J. and Oh, I.S. (1966) Investigation Report on the Kuryong Copper and Pyrite Mine. Geological Survey of Korea, Bulletin n.9, p.199-216
  13. McGregor, R.G., Blowes, D.W., Jambor, J.L. and Robertson, W.D. (1998) The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario. Canada Journal of Contaminant Hydrology, v.33, p.247-271 https://doi.org/10.1016/S0169-7722(98)00060-6
  14. Min, J.S., Jung, Y.W. Lee, H.J., Lee, S.T., Na, H.J. and Chun, C.H. (1998) Study on the Environmental and Safety Problems and their Remediation Around Mining Areas. KIGAM Research Report KR-98(C)-48, p.55-81
  15. Moon, Y. (2007) Prediction of heavy metal behaviors and factor controlling oxidation of tailings in an abandoned mine. Ph.D. Dissertation, Yonsei University, Seoul, Korea
  16. Moon, Y., Song, Y. and Moon, H.-S. (2008) The potential acid-producing capacity and factors controlling oxidation tailings in the Guryong mine, Korea. Environmental Geology v.53, p.1787-1797 https://doi.org/10.1007/s00254-007-0784-9
  17. Moon, Y., Moon, H.-S., Park, Y.S., Moon, J.-W., Song, Y. and Lee, J.-C. (2003) Mobility of transition metals bychange of redox condition in dump tailings from the Dukum Mine, Korea. Economic and Environmental Geology, v.36, p.285-293
  18. Nordstrom, D.K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary minerals. In Acid Sulphate weathering, p.37-56. Soil Science Society American
  19. Parkhurst, D.L. and Appelo, C.A.J. (2002) User's Guide to PHREEQCI (version 2.8)- A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey. Denver, Colorado
  20. Stollenwerk, K.G. (1994) Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona. Applied Geocemistry, v.9, p.353-369 https://doi.org/10.1016/0883-2927(94)90058-2
  21. Taylor, J.C. and Zhu Rui (1992) Simultaneous use of observed and calculated standard profiles in quantitative XRD analysis of minerals by the multiphase Rietveld method: the determination of pseudorutile in mineral sands products. Powder Diffraction, v.7, p.152-161 https://doi.org/10.1017/S0885715600018510