Clouds are composed of tiny water droplets, ice crystals, or mixtures suspended in the atmosphere and cover about two-thirds of the Earth's surface. Cloud detection in satellite images is a very difficult task to separate clouds and non-cloud areas because of similar reflectance characteristics to some other ground objects or the ground surface. In contrast to thick clouds, which have distinct characteristics, thin transparent clouds have weak contrast between clouds and background in satellite images and appear mixed with the ground surface. In order to overcome the limitations of transparent clouds in cloud detection, this study conducted cloud detection focusing on transparent clouds using machine learning techniques (Random Forest [RF], Convolutional Neural Networks [CNN]). As reference data, Cloud Mask and Cirrus Mask were used in MOD35 data provided by MOderate Resolution Imaging Spectroradiometer (MODIS), and the pixel ratio of training data was configured to be about 1:1:1 for clouds, transparent clouds, and clear sky for model training considering transparent cloud pixels. As a result of the qualitative comparison of the study, bothRF and CNN successfully detected various types of clouds, including transparent clouds, and in the case of RF+CNN, which mixed the results of the RF model and the CNN model, the cloud detection was well performed, and was confirmed that the limitations of the model were improved. As a quantitative result of the study, the overall accuracy (OA) value of RF was 92%, CNN showed 94.11%, and RF+CNN showed 94.29% accuracy.
The polarimetric backscattering coefficients of a wet-land rice field which is an experimental plot belong to National Institute of Agricultural Science and Technology in Suwon are measured using ground-based polarimetric scatterometers at 1.8 and 5.3 GHz throughout a growth year from transplanting period to harvest period (May to October in 2006). The polarimetric scatterometers consist of a vector network analyzer with time-gating function and polarimetric antenna set, and are well calibrated to get VV-, HV-, VH-, HH-polarized backscattering coefficients from the measurements, based on single target calibration technique using a trihedral corner reflector. The polarimetric backscattering coefficients are measured at $30^{\circ},\;40^{\circ},\;50^{\circ}\;and\;60^{\circ}$ with 30 independent samples for each incidence angle at each frequency. In the measurement periods the ground truth data including fresh and dry biomass, plant height, stem density, leaf area, specific leaf area, and moisture contents are also collected for each measurement. The temporal variations of the measured backscattering coefficients as well as the measured plant height, LAI (leaf area index) and biomass are analyzed. Then, the measured polarimetric backscattering coefficients are compared with the rice growth parameters. The measured plant height increases monotonically while the measured LAI increases only till the ripening period and decreases after the ripening period. The measured backscattering coefficientsare fitted with polynomial expressions as functions of growth age, plant LAI and plant height for each polarization, frequency, and incidence angle. As the incidence angle is bigger, correlations of L band signature to the rice growth was higher than that of C band signatures. It is found that the HH-polarized backscattering coefficients are more sensitive than the VV-polarized backscattering coefficients to growth age and other input parameters. It is necessary to divide the data according to the growth period which shows the qualitative changes of growth such as panicale initiation, flowering or heading to derive functions to estimate rice growth.
Park, Juhan;Lee, Seung-Jae;Kang, Minseok;Kim, Joon;Yang, Ilkyu;Kim, Byeong-Guk;You, Keun-Gi
Korean Journal of Agricultural and Forest Meteorology
/
v.20
no.1
/
pp.47-56
/
2018
Providing high-quality meteorological observation data at sites that represent actual farming environments is essential for useful agrometeorological services. The Automated Agricultural Observing System (AAOS) of the Korean Meteorological Administration, however, has been deployed on lawns rather than actual farm land. In this study, we show the inaccuracies that arise in AAOS data by analyzing temporal and vertical variation and by comparing them with data recorded by the National Center for AgroMeteorology (NCAM) tower that is located at an actual farming site near the AAOS tower. The analyzed data were gathered in August and October (before and after harvest time, respectively). Observed air temperature and water vapor pressure were lower at AAOS than at NCAM tower before and after harvest time. Observed reflected shortwave radiation tended to be higher at AAOS than at NCAM tower. Soil variables showed bigger differences than meteorological observation variables. In August, observed soil temperature was lower at NCAM tower than at AAOS with smaller diurnal changes due to irrigation. The soil moisture observed at NCAM tower continuously maintained its saturation state, while the one at AAOS showed a decreasing trend, following an increase after rainfall. The trend changed in October. Observed soil temperature at NCAM showed similar daily means with higher diurnal changes than at AAOS. The soil moisture observed at NCAM was continuously higher, but both AAOS and NCAM showed similar trends. The above results indicate that the data gathered at the AAOS are inaccurate, and that ground surface cover and farming activities evoke considerable differences within the respective meteorological and soil environments. We propose to shift the equipment from lawn areas to actual farming sites such as rice paddies, farms and orchards, so that the gathered data are representative of the actual agrometeorological observations.
Korean Journal of Agricultural and Forest Meteorology
/
v.4
no.2
/
pp.95-102
/
2002
Spatial interpolation has become a common procedure in converting temperature forecasts and observations at irregular points for use in regional scale ecosystem modeling and the model based decision support systems for resource management. Neglection of terrain effects in most spatial interpolations for short term temperatures may cause erroneous results in mountainous regions, where the observation network hardly covers full features of the complicated terrain. A spatial interpolation model for daytime hourly temperature was formulated based on error analysis of unsampled site with respect to the site topography. The model has a solar irradiance correction scheme in addition to the common backbone of the lapse rate - corrected inverse distance weighting. The solar irradiance scheme calculates the direct, diffuse and reflected components of shortwave radiation over any surfaces based on the sun-slope geometry and compares the sum with that over a reference surface. The deviation from the reference radiation is used to calculate the temperature correction term by an empirical conversion formula between the solar energy and the air temperature on any sloped surfaces at an hourly time scale, which can be prepared seasonally for each land cover type. When this model was applied to a 14 km by 22 km mountainous region at a 10 m horizontal resolution, the estimated hourly temperature surfaces showed a better agreement with the observed distribution than those by a conventional method.
Power lines are one of the main obstacles causing an aircraft crash and thus their realtime detection is significantly important during flight. To avoid such flight obstacles, the use of LIDAR has been recently increasing thanks to its advantages that it is less sensitive to weather conditions and can operate in day and night. In this study, we suggest a fast method to detect power lines from LIDAR data for flight obstacle avoidance. The proposed method first extracts non-ground points by eliminating the points reflected from ground surfaces using a filtering process. Second, we calculate the eigenvalues for the covariance matrix from the coordinates of the generated non-ground points and obtain the ratio of eigenvalues. Based on the ratio of eigenvalues, we can classify the points on a linear structure. Finally, among them, we select the points forming horizontally long straight as power-line points. To verify the algorithm, we used both real and simulated data as the input data. From the experimental results, it is shown that the average detection rate and time are 80% and 0.2 second, respectively. If we would improve the method based on the experiment results from the various flight scenario, it will be effectively utilized for a flight obstacle avoidance system.
Korean Journal of Agricultural and Forest Meteorology
/
v.2
no.1
/
pp.9-15
/
2000
The objective of this study is to evaluate the use of RADARSAT and Landsat TM data for the monitoring of rice growth. The relationships between backscatter coefficients($\sigma$$^{0}$ ) of RADARSAT data and digital numbers (DN) of Landsat TM and rice growth parameters were investigated. Radar backscatter coefficients were calculated by calibration process and then compared with rice growth parameters; plant height, leaf area index (LAI), and fresh and dry biomass. When radar backscatter coefficient ($\sigma$$^{0}$ ) of rice was expressed as a function of time, it is shown that the increasing trend ranged from -22--20dB to -9--8dB as growth advances. The temporal variation of backscatter coefficient was significant to interpret rice growth. According to the relationship between leaf area index and backscatter coefficient, backscatter coefficient underestimated leaf area index at the beginning of life history and overestimated, at the reproductive stage. The same increasing trend between biomass and backscatter coefficient was shown. From these results, RADARSAT data appear positive to the monitoring of rice growth. Each band of time-series Landsat TM data had a significant trend as a rice crop grows during its life cycle. Spectral indices, NDVI[(TM4-TM3)/(TM4+TM3)] and RVI(TM4/TM2), derived from Landsat TM equivalent bands had the same trend as leaf area index.
Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Song, Yoon-Ho;Lee, Ki-Ha
Geophysics and Geophysical Exploration
/
v.12
no.4
/
pp.361-366
/
2009
Layered-earth Green's functions in electormagnetic (EM) surveys play a key role in modeling the response of exploration targets. They are computed through the Hankel transforms of analytic kernels. Computational precision depends upon the choice of algebraically equivalent forms by which these kemels are expressed. Since three-dimensional (3D) modeling can require a huge number of Green's function evaluations, total computational time can be influenced by computational time for the Hankel transform evaluations. Linear digital filters have proven to be a fast and accurate method of computing these Hankel transforms. In EM modeling for 3D inversion, electric fields are generally evaluated by the secondary field formulation to avoid the singularity problem. In this study, three components of electric fields for five different sources on the surface of homogeneous half-space were derived as primary field solutions. Moreover, reflection coefficients in TE and TM modes were produced to calculate EM responses accurately for a two-layered model having a sea layer. Accurate primary fields should substantially improve accuracy and decrease computation times for Green's function-based problems like MT problems and marine EM surveys.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.23
no.11
/
pp.1307-1314
/
2012
To reduce the effects of clutters with subsurface inhomogenities in ground-penetrating radar(GPR) images, an eigenimage based signal-processing technique is presented. If the conventional eigenimage filtering technique is applied to B-scan images of a GPR survey, relatively homogeneous clutters such as antenna ringing, direct coupling between transmitting and receiving antennas, and soil-surface reflection, can be removed sufficiently. However, since random clutters of subsurface inhomogenities still remain in the images, target signals are distorted and obscured by the clutters. According to a comparison of the eigenimage filtering results, there is different coherency between subsurface clutters and target signals. To reinforce the pixels with high coherency and reduce the pixels with low coherency, the pixel-by-pixel geometric-mean process after the eigenimage filtering is proposed here. For the validity of the proposed approach, GPR survey for detection of a metal target in a randomly inhomogeneous soil is numerically simulated by using a random media generation technique and the finite-difference time-domain(FDTD) method. And the proposed signal processing is applied to the B-scan data of the GPR survey. We show that the proposed approach provides sufficient enhancement of target signals as well as remarkable reduction of subsurface inhomogeneous clutters in comparison with the conventional eigenimage filtering.
Journal of the Korean Institute of Landscape Architecture
/
v.47
no.3
/
pp.12-21
/
2019
In order to investigate the effect of various pavement materials (artificial grass, natural grass, and clay sand) on the human thermal environment, the microclimate data in early autumn (air temperature, humidity, wind speed, and shortwave and longwave radiation) were measured and compared on each surface. The mean air temperature, humidity and wind speed of the pavement materials did not differ significantly and showed the greatest difference in the mean radiant temperature. Natural grass, which has the highest albedo, has the highest amount of shortwave radiation. The artificial turf had the highest surface temperature and the highest amount of longwave radiation. In the human thermal environment index PET, artificial grass > clay sand > natural grass. Natural grass had a maximum 2/3 level lower and a mean 1/2 level lower in PET as compared to artificial grass. The clay sand pavement had a maximum 2/3 level lower and a mean 1/3 level lower than the artificial grass. Natural grass had a maximum 1/3 level lower than the clay sand pavement. Their UTCIs showed smaller differences than the PETs. Therefore, it is necessary to carefully choose materials from the planning stage when designing outdoor spaces, including playgrounds.
The land cover map is a very important data that is used as a basis for decision-making for land policy and environmental policy. The land cover map is mapped using remote sensing data, and the classification results may vary depending on the acquisition time of the data used even for the same area. In this study, to overcome the classification accuracy limit of single-period data, multi-series satellite images were used to learn the difference in the spectral reflectance characteristics of the land surface according to seasons on a U-Net model, one of the deep learning algorithms, to improve classification accuracy. In addition, the degree of improvement in classification accuracy is compared by comparing the accuracy of single-period data. Seoul, which consists of various land covers including 30% of green space and the Han River within the area, was set as the research target and quarterly Sentinel-2 satellite images for 2020 were aquired. The U-Net model was trained using the sub-class land cover map mapped by the Korean Ministry of Environment. As a result of learning and classifying the model into single-period, double-series, triple-series, and quadruple-series through the learned U-Net model, it showed an accuracy of 81%, 82% and 79%, which exceeds the standard for securing land cover classification accuracy of 75%, except for a single-period. Through this, it was confirmed that classification accuracy can be improved through multi-series classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.