• Title/Summary/Keyword: 지질공학

Search Result 1,792, Processing Time 0.037 seconds

Verification of the HWAW (Harmonic Wavelet Analysis of Waves) Method Using Multi Layered Model Testing Site (실대형 모형부지를 이용한 HWAW(Harmonic Wavelet Analysis of Waves) 기법의 검증)

  • Kim, Jong-Tae;Park, Hyong-Choon;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.33-46
    • /
    • 2007
  • HWAW (Harmonic Wavelet Analysis of Wave) method, which is non-destructive method using body and surface waves, has the advantages of obtaining 2D subsurface imaging because it uses a short receiver spacing to obtain the $V_s$ profile of whole depth. Even though the reliability of HWAW method has already been verified by using the numerical simulation in the various layered models, it is very difficult to evaluate the reliability of HWAW in the field because the exact $V_s$ values of the experimental site are unknown. In this study, a model testing site where the material properties and layer information could be controlled was constructed to verify the reliability of HWAW method. The detailed geometry of the testing site was strictly measured by surveying, and 140 vertical and horizontal geophones were established at the boundary of each layer to evaluate the dynamic material properties. Using the interval travel times between the upper and lower geophones, the body wave velocities of each layer were 2 dimensionally obtained as reference data, and comparative study using HWAW method was performed. By comparing 2D Vs profile obtained by HWAW method to the reference data, the reliability of HWAW method was verified.

A Study of Obtaining Reliable Travel Time Information in Downhole Seismic Method (다운홀 기법에서 신뢰성 있는 도달시간 정보 산출 방법에 대한 고찰)

  • Bang, Eun-Seok;Lee, Sei-Hyun;Kim, Jong-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.17-33
    • /
    • 2007
  • Downhole seismic method is widely used for obtaining shear wave velocity profile of a site because it is simple and economical. Determining accurate travel time of shear wave is very important to obtain reliable result in downhole seismic method. In this paper, comparison study of various travel time determination methods was performed. Numerical study and model chamber test were performed for effective comparison study. Signal traces were acquired by performing downhole test at each numerical simulation and soil box test. Travel time data for each signal traces were determined by using six different methods and Vs profiles were evaluated. Comparing travel time data and Vs profiles with the reference value, the first arrival picking method proved to be ambiguous and unreliable. Other methods also did not always provide accurate results and the magnitude of error was dependent on the signal to noise ratio. Cross-correlation method proved to be the most adequate method for the field application and it was verified additionally with field data.

Nitrogen Transport In Groundwater-Surface Water Hyporheic Zone at Brackish Lake (기수호의 지하수-지표수 혼합대 내 질소 거동 분석)

  • Seul Gi Lee;Jin Chul Joo;Hee Sun Moon;Su Ryeon Kim;Dong Jun Kim
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.2
    • /
    • pp.23-34
    • /
    • 2024
  • Sediment, aquifer materials, surface water, and groundwater from brackish Songji lake affected by salinity of seawater, were collected and a pilot scale column experiment was conducted to simulate the nitrogen transport through the hyporheic zone. Upstream experiments of groundwater displayed that groundwater containing a small amount of salt percolated into aquifers and sediments, maintaining low dissolved oxygen concentrations. In addition, partial denitrification occurred in the aquifer due to salinity and low dissolved oxygen, resulting in the accumulation of NO2-. In sediments,nitrogenous compounds were reduced due to adsorption by long residence times or microbial-mediated oxidation/reduction reactions. Downstream experiments of surface water displayed that surface water from the brackish lake, containing high concentrations of dissolved oxygen and salts, infiltrated into the sediments and aquifer, supplying high dissolved oxygen concentrations. This resulted in biological nitrification in the sediments and aquifer, which reduced nitrogen-based pollutants despite the high salt concentration in the surface water. Whereas partial denitrification at low dissolved oxygen concentrations in the upwelling mixing zone was observed by salinity and accumulated NO2-, nitrification at high dissolved oxygen concentrations in the downwelling mixing zone was not significantly affected by salinity. These results confirm that salinity in the brackish water lake has some influence on the nitrogen behavior of the hyporheic mixing zone, although nitrogen behavior is a complex combination of factors such as DO, pH, substrate concentration, and organic matter concentration.

Analysis of Pile Behavior according to Bearing Condition for Vertical Extension Remodeling (수직증축 리모델링 시 말뚝지지 조건에 따른 말뚝기초 거동 분석)

  • Noh, Yujin;Park, Jongjeon;Oh, Kyuoung Seok;Jang, Seo-Yong;Ko, Junyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.191-201
    • /
    • 2024
  • In this study, three-dimensional finite element analysis was used to analyze the behavior of existing and reinforcing piles according to the pile support conditions for vertical extension remodeling. Cap support conditions (group pile, piled raft foundation) and pile tip conditions (rock, soil embedment) were considered as factors influencing existing and reinforcing piles behavior. For the quantitative analysis of existing and reinforcing piles, the displacement, load distribution ratio, and axial force by depth according to the analysis stage were analyzed. As a result of the analysis, it was confirmed that the largest settlement occurred in the reinforcing pile due to the pre-loading method. In particular, a large amount of settlement occurred in group piles regardless of the embedment conditions. In the piled raft foundation, it was confirmed that the displacement and load distribution ratio of existing piles and reinforcing piles were reduced due to the influence of the raft. The axial force by depth showed a difference between group pile and piled raft foundation, which appears to be a major factor affecting displacement and load distribution ratio. Based on the numerical analysis results, it was confirmed that cap support conditions and pile tip embedment conditions should be considered in the design of pile foundations for vertical extension remodeling.

Automated Data Extraction from Unstructured Geotechnical Report based on AI and Text-mining Techniques (AI 및 텍스트 마이닝 기법을 활용한 지반조사보고서 데이터 추출 자동화)

  • Park, Jimin;Seo, Wanhyuk;Seo, Dong-Hee;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.69-79
    • /
    • 2024
  • Field geotechnical data are obtained from various field and laboratory tests and are documented in geotechnical investigation reports. For efficient design and construction, digitizing these geotechnical parameters is essential. However, current practices involve manual data entry, which is time-consuming, labor-intensive, and prone to errors. Thus, this study proposes an automatic data extraction method from geotechnical investigation reports using image-based deep learning models and text-mining techniques. A deep-learning-based page classification model and a text-searching algorithm were employed to classify geotechnical investigation report pages with 100% accuracy. Computer vision algorithms were utilized to identify valid data regions within report pages, and text analysis was used to match and extract the corresponding geotechnical data. The proposed model was validated using a dataset of 205 geotechnical investigation reports, achieving an average data extraction accuracy of 93.0%. Finally, a user-interface-based program was developed to enhance the practical application of the extraction model. It allowed users to upload PDF files of geotechnical investigation reports, automatically analyze these reports, and extract and edit data. This approach is expected to improve the efficiency and accuracy of digitizing geotechnical investigation reports and building geotechnical databases.

A source and phase identification study of the 10 December 2002 Cheolwon, Korea, earthquake of ML 3.6 (2002년 12월 10일 규모 3.6 철원지진의 진원요소 및 파상분석)

  • 김우한;박종찬;함인경;김성균;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.19-24
    • /
    • 2003
  • We analysed seismic phases recorded by the 10 December 2002 Cheolwon, Korea, earthquake of $M_{L}$ 3.6 and obtained source parameters such as hypocenter, origin time, earthquake magnitude. Velocity and acceleration records used in this study are from the KMA and KIGAM seismic networks. Due to the location of the epicenter in the north of the DMZ(Demilitarized Zone), direct Pg phases were recorded only at five stations in the area south of DMZ. Identification of refracted Pn phase as the first arrival is difficult in most stations. Therefore, the hypocenter determined by existing routine methods could be affected by a large error. In order to avoid the possibility of the problem, we employed a method of seismic phase analysis developed by Kim et al.. The direct, refracted, and reflected P and S phases were successfully identified using the method together with the travel time curve data. In order to improve the accuracy in determination of the hypocenter and origin time, we included PmP and SmS phases in the analysis in addition to the phases such as Pg, Pn, Sg and Sn. The epicenter, depth, and origin time of the Cheolwon earthquake determined based on data of 11 stations within 200km from the epicenter are $38.81^{\circ}$N, $127.22^{\circ}$E, 12.0km, and 7:42:51.4(local time), respectively. The average value of the local magnitude based on the Richter's definition from all the stations is 3.6 in $M_{L}$. This magnitude is smaller by 0.2 and 0.5 compared with magnitudes determined by KMA and KIGAM, respectively.

A Study on the Characteristics of Bearing Capacity for SIP Piles in Domestic Areas (국내 SIP 말뚝의 지지력 특성에 관한 연구)

  • Lee, Song;Park, Jun-Hong;Park, Joong-Bai;Kim, Tae-Hwoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.319-327
    • /
    • 2002
  • In this research, problems of recent design methods and their improvement for SIP(Soil-Cement Injected precast Pile) in domestic areas were studied by using the properties of load-settlement curves and bearing capacity from field loading tests. Elastic and plastic settlement for total settlement in each loading step of loading tests conducted in domestic areas has been shown to have a tendency. From this tendency and bearing capacity determined by loading tests, it could be ascertained that empirical chart could be an assistant tool in SIP design. It was shown that SIP design using N-value in domestic area with soil condition of granitic type resulted in very conservative hearing capacity. On the other hands, in soil with unfitted geological conditions, the design could be insecure. Also, we could ascertain that Meyerhof's bearing capacity using modified N-value on the tip part of pile was more applicable than recent design method where tip bearing capacity was 20NA$_p$ N-value limited to 50. These results showed that modified design method could be more economic than those in the past because it used pile's bearing capacity unto tolerable load of pile material.

Development of Multiphase Flow Simulator Using the Fractional Flow Based Approach for Wettability Dependent NAPL Migration (친수성에 의존하는 소수성 액체의 거동을 위한 분율 유동 접근 방식을 이용한 다상 유동 수치 모델링 개발)

  • Suk, Hee-Jun;Yeo, In-Wook;Lee, Kang-Kun
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.161-170
    • /
    • 2011
  • The multiphase flow simulator, CHEMPS, was developed based on the fractional flow approach reported in the petroleum engineering literature considering fully three phase flow in physically and chemically heterogeneous media. It is a extension of MPS developed by Suk and Yeh (2008) to include the effect of wettability on the migration of NAPL. The fractional flow approach employs water, total liquid saturation and total pressure as the primary variables. Most existing models are limited to two-phase flow and specific boundary conditions when considering physically heterogeneous media. In addition, these models focused mainly on the water-wet media. However, in a real system, variations in wettability between water-wet and oil-wet media often occur. Furthermore, the wetting of porous media by oil can be heterogeneous, or fractional, rather than uniform due to the heterogeneous nature of the subsurface media and the factors that affect the wettability. Therefore, in this study, the chemically heterogeneous media considering fractional wettability as well as physically heterogeneous media were simulated using CHEMPS. In addition, the general boundary conditions were considered to be a combination of two types of boundaries of individual phases, flux-type and Dirichlet type boundaries.

Distribution of $^{222}Rn$ Concentration in Seoul Subway Stations (서울지역 지하철역의 라돈농도 분포 특성)

  • Jeon, Jae-Sik;Kim, Dok-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.588-595
    • /
    • 2006
  • Indoor radon($^{222}Rn$) concentrations of subway stations in Seoul area were measured to survey the environmental indoor radon levels and to identify sources of radon. The radon concentration of indoor air by method of long-term measuring with a-track detector were surveyed at 232 subway stations from 1998 to 2004. And the radon concentration in ground-water was measured with a method of alpha particle counting. To trace main source of radon, 8 out of 232 stations were selected and their radon concentrations in tunnel and on platform were analyzed. Total geometric mean and arithmetic mean of radon concentrations in all stations from 1998 to 2004 were $1.40{\pm}1.94pCi/L,\;1.65{\pm}1.07$ respectively. Geometric means of radon concentrations on platform and concourse were $1.54{\pm}1.96pCi/L,\;1.23{\pm}1.88pCi/L$ respectively, with higher concentration at the platform than at the concourse. The geological structure was significantly correlated to the indoor radon concentration in subway stations region. Radon concentrations of adjacent tunnel and ground-water of subway station was significantly correlated to the indoor radon concentration in subway stations. And There was a significant difference in radon concentration, depending on the depth levels in platform of subway stations(p<0.05).

Impacts of Combined Hydrogeological and Chemical Heterogeneities on the Transport of Leachate through Landfill Sites (수리지질학적, 화학적 특성의 복합 불균질성이 매립지반 내 침출수 이동에 미치는 영향)

  • Lee, Kun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2009
  • The transport of landfill leachate in the subsurface formations of unlined landfill sites is considered. The impacts of hydrogeological and chemical heterogeneities on the leachate transport are assessed by examining the results from a series of Monte-Carlo simulations. The landfill system simulated in this study is hypothetically represented with three levels of spatial variability for the hydrogeological and chemical parameter; (1) homogeneous hydraulic conductivity (K) and distribution coefficient ($K_d$), (2) K heterogeneity only, and (3) combined heterogeneities of K and $K_d$. To calculate the transport of leachate through negatively-correlated random hypothetical K-$K_d$ fields generated using geostatistical input parameters, a saturated flow model is linked with a contaminant transport model. Point statistic values such as mean, standard deviation, and coefficient of variation of the concentration were obtained from 100 Monte-Carlo trials. Results of point statistics show that the heterogeneities of K and $K_d$ in the landfill site prove to be an important parameter in controlling leachate concentrations. Consideration of combined K and $K_d$ heterogeneities results in enhancing the variability of contaminant transport. The variability in the leachate concentration for different realizations also increases as the distance between source and monitoring well increase.