• Title/Summary/Keyword: 지진성능평가

Search Result 729, Processing Time 0.029 seconds

Efficient use of AWS data for determining the Disaster Prevention Performance Objectives (방재성능목표 설정의 AWS 자료 활용방안)

  • Kong, So Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.221-221
    • /
    • 2022
  • 방재성능목표란 홍수, 호우 등으로부터 재해를 예방하기 위한 방재정책 등에 적용하기 위하여 처리 가능한 시간당 강우량 및 연속강우량의 목표로, 각 지자체별로 지역특성 및 경제여건 등을 고려하여 지역별 방재성능목표를 설정한다. 지역별 방재성능목표 기준을 설정하기 위해 전국을 168개 티센망으로 분류하고 69개 지점 확률강우량을 활용하여 지방자치단체별 확률강우량을 산정하고, 지방자치단체별 티센면적 비율을 감안하여 각 지자체별 방재성능목표 설정 기준을 마련한다. 이때 확률강우량 산정에 기상청에서 제공하는 종관기상관측(ASOS) 자료를 이용하는데, 종관기상관측(ASOS, Automated Synoptic Observing System)이란 종관규모의 날씨를 파악하기 위하여 정해진 시각에 모든 관측소에서 같은 시각에 실시하는 지상관측으로, 종관규모는 일기도에 표현되어 있는 고기압이나 저기압의 공간적 크기 및 수명을 말하며, 해당 지역의 현재 기상 실시간 제공 및 기상예보에 활용한다. 그러나 ASOS 자료로 산정한 확률강우량을 토대로 설정한 지역별 방재성능목표는 지배관측소개소 및 면적 비율에 따라 강우량이 실제 해당 지역에 내린 강우량에 비해 작거나 크게 산정되어 실제 강우량을 반영하지 못하는 문제가 발생한다. 이에 지진·태풍·홍수·가뭄 등 기상현상에 따른 자연재해를 막기 위해 실시하는 지상관측인 방재성능관측(AWS, Automatic Weather System)을 1997년부터 약 510여개 지점에 설치하여 기상관측자료를 구축하고 있으나, 관측자료가 30년 미만이므로 자료의 일관성 및 신뢰도 확보 등의 문제로 이용하고 있지 않다. 실제로 ASOS 관측소와 AWS 관측소의 시간 강우량 최댓값 차이가 큼에도 불구하고 행안부는 지역별 방재성능목표 수립을 위한 강우량 산정에서 AWS 관측소의 기록은 반영하지 않고 ASOS 관측소 기록만 적용하여 실제 해당 지역의 강우량을 반영하는 방재 대책을 수립하지 못하는 실정이다. 따라서 소규모 유역 및 재해영향평가 등의 경우 인근 지역에 AWS 관측소가 있을 경우, 해당지역의 기상 특성을 대변하는 자료로 보유관측년수가 30년 이상인 AWS 자료의 적극적인 활용이 필요할 것으로 판단된다.

  • PDF

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.

Analysis of Nonlinear Torsional Behavior for High Strength Reinforced Concrete Structure Using 3-Dimensional Lattice Model (3차원 래티스 모델을 사용한 고강도 철근콘크리트 구조물의 비선형 비틀림 해석)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Because of earthquakes that have recently struck, seismic design criteria that considered performance of structure were included in the design concepts. Thus, a simple analysis tool is needed to predict the strength and ductility of RC structures. In this study, three-dimensional lattice model was developed to expand the two-dimensional lattice model. Torsional analysis of the structure was done to evaluate the developed three-dimensional lattice model. Lattice model was evaluated by comparing analytical results with experimental results. Lattice element size was evaluated using the results of analysis. Torsional analysis results, using three-dimensional lattice model, show that the results are relatively consistent with the experimental values.

Case Study on Influential Factors of Nonlinear Response History Analysis - Focused on 1989 Loma Prieta Earthquake - (비선형 응답이력해석의 영향인자에 대한 사례연구 - 1989 Loma Prieta 지진 계측기록을 중심으로 -)

  • Liu, Qihang;Lee, Jin-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.45-58
    • /
    • 2017
  • As many seismic codes for various facilities are changed into a performance based design code, demand for a reliable nonlinear response-history analysis (RHA) arises. However, the equivalent linear analysis has been used as a standard approach since 1970 in the field of site response analysis. So, the reliability of nonlinear RHA should be provided to be adopted in replace of equivalent linear analysis. In this paper, the reliability of nonlinear RHA is reviewed for a layered soil layer using Loma Prieta earthquake records in 1989. For this purpose, the appropriate way for selecting nonlinear soil models and the effect of base boundary condition for 3D analysis are evaluated. As a result, there is no significant differences between equivalent linear and nonlinear RHA. In case of 3D analysis, absorbing boundary condition should be applied at base to prevent rocking motion of the whole model.

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Seismic Response Control of Structures Using Decentralized Response-Dependent MR Dampers (분산제어식 응답의존형 MR 감쇠기를 이용한 구조물의 지진응답제어)

  • Youn, Kyung-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.761-767
    • /
    • 2007
  • In centralized control system, complicated control systems including sensors, power supply and dampers should be required to satisfy the target response of large-scale structures. The practical applications of the centralized control system, however, is very difficult due to high order finite element model of structures, uncertainty of models, and limitations of the excitation system. In this study, the decentralized response-dependent MR damper of which magnetic field is automatically modulated according to the displacement or velocity transferred to the damper without any sensing and computing systems. this decentralized response-dependent MR damper are investigated according to the ranges of relative magnitude between the control force of MR damper and the story shear force of structures by nonlinear time history analysis. Finally, its performance is compared with centralized LQR algorithm which is used in general centralized control theory for a three story building structure.

Nonlinear Dynamic Analysis of RC Frames Based on Constitutive Models of Constituent Materials (재료의 구성모델에 따른 철근콘크리트 골조의 비선형 동적거동 특성 차이에 관한 연구)

  • Heo, YeongAe;Kang, Thomas H.K.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Constitutive modeling of constituent materials is very important for reinforced concrete (RC) frames. Cyclic constitutive behavior of unconfined concrete, confined concrete and reinforcing steel should be well defined in fiber-based discretization of RC sections. This study performs nonlinear dynamic analyses of RC frame structures to investigate the sensitivity of seismic behavior of such frames to different constitutive models of constituent materials. The study specifically attempts to examine confinement effects in concrete modeling and degrading effects in steel modeling, which substantially affects the monotonic, cyclic and seismic responses of RC members and frames. Based on the system level analysis, it is shown that the response of non-ductile frames is less sensitive to confined concrete models while the modeling of reinforcing steel is quite influential to the inelastic response of both non-ductile and ductile frames.

Nonlinear Analysis of RC Bridge Columns for Ductility Evaluation (철근콘크리트 교각의 연성도 평가를 위한 비선형해석)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.39-49
    • /
    • 2003
  • This research is a part of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. A nonlinear analytical method is proposed to obtain moment-curvature relationship and lateral load-displacement relationship. Various analytical models that contribute seismic behavior of reinforced concrete bridge columns are adopted and modified by comparing quasi-static test results of reinforced concrete columns with spirals of circular hoops. The analysis adopts confined concrete model, longitudinal reinforcement test result of reinforced concrete columns with spirals or circular hoops. The analysis adopts confined concrete model, etc. The results obtained using the propose analytical method agree well with test results and give conservative estimations particularly for deformation capacity and ductility.

Effects of Strength Reduction Factors for Capacity Spectrum Analysis of Bridge Structures using Inelastic Demand Spectrum (비탄성 요구도 스펙트럼을 이용한 교량구조물의 역량스펙트럼 해석에 대한 강도감소계수의 영향)

  • Song, Jong-Keol;Jin, He-Shou;Jang, Dong-Hui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.25-37
    • /
    • 2008
  • The capacity spectrum method (CSM) is a simple and graphical seismic analysis procedure. Originally, it has been developed for buildings, but now its applicability has been extended to bridge structures. It is based on the capacity curve estimated by pushover analysis and demand spectrum reduced from linear elastic design spectrum by using effective damping or strength reduction factor. In this paper, the inelastic demand spectrum as the reduced demand spectrum is calculated from the linear elastic design spectrum by using the several formulas for the strength reduction factor. The effects of the strength reduction factor for the capacity spectrum analysis are evaluated for 3 types of symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM which several formulas for strength reduction factor were applied, the maximum displacements estimated by the CSM are compared with the results obtained by nonlinear time history analysis for 8 artificially generated earthquakes. The maximum displacements estimated by the CSM using the SJ formula among the several strength reduction factors provide the most accurate agreement with those calculated by the inelastic time history analysis.

The Seismic Response Evaluation of Shear Buildings by Various Approximate Nonlinear Methods (비선형 약산법들에 의한 전단형 건물의 지진응답평가)

  • Kim, Jae-Ung;Kang, Pyeong-Doo;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.75-86
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. Analysis methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to shear buildings and various earthquakes. The conclusions of this study are summarized as follows: 1) Linear capacity spectrum method may fail to find a convergent answer or make a divergence. Even if a convergent answer is found, it has a large error in some cases and the error varies greatly depending on earthquakes. 2) Although nonlinear capacity spectrum method need much less calculation than capacity spectrum method and find an answer in any case, it may be difficult to obtain an accurate answer and generally large error occurs. 3) The nonlinear direct spectrum method is thought to have good applicability because it produce relatively correct answer than other methods directly from pushover curves and nonlinear response spectrums without additional and iterative calculations.