DOI QR코드

DOI QR Code

Effects of Strength Reduction Factors for Capacity Spectrum Analysis of Bridge Structures using Inelastic Demand Spectrum

비탄성 요구도 스펙트럼을 이용한 교량구조물의 역량스펙트럼 해석에 대한 강도감소계수의 영향

  • Received : 2007.04.20
  • Accepted : 2007.11.19
  • Published : 2008.01.31

Abstract

The capacity spectrum method (CSM) is a simple and graphical seismic analysis procedure. Originally, it has been developed for buildings, but now its applicability has been extended to bridge structures. It is based on the capacity curve estimated by pushover analysis and demand spectrum reduced from linear elastic design spectrum by using effective damping or strength reduction factor. In this paper, the inelastic demand spectrum as the reduced demand spectrum is calculated from the linear elastic design spectrum by using the several formulas for the strength reduction factor. The effects of the strength reduction factor for the capacity spectrum analysis are evaluated for 3 types of symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM which several formulas for strength reduction factor were applied, the maximum displacements estimated by the CSM are compared with the results obtained by nonlinear time history analysis for 8 artificially generated earthquakes. The maximum displacements estimated by the CSM using the SJ formula among the several strength reduction factors provide the most accurate agreement with those calculated by the inelastic time history analysis.

역량스펙트럼 방법은 그래픽적인 방법으로 간단하게 지진해석을 수행한다. 개발 초기에 역량스펙트럼 방법은 빌딩구조물에 주로 사용되었으나 최근에는 교량구조물에도 사용할 수 있도록 확장되었다. 역량스펙트럼 방법은 비탄성 정적해석으로부터 구한 역량곡선과 유효감쇠 혹은 강도감소계수를 사용하여 선형탄성 설계스펙트럼을 감소시켜 구한 요구도 스펙트럼에 기반을 두고 있다. 본 논문에서는 감소된 요구도 스펙트럼은 강도감소계수에 대한 몇 개의 제안식을 사용하여 구한 비탄성 요구도 스펙트럼을 사용한다. 역량스펙트럼 해석에 대한 강도감소계수의 영향은 세가지 종류의 대칭 및 비대칭 교량에 대하여 평가하였다. 몇 개의 강도감소계수를 적용한 역량스펙트럼 방법의 정확성을 평가하기 위하여, 역량스펙트럼 방법에 의한 최대변위를 8개의 인공지진에 의한 비탄성 시간이력해석 결과와 비교하였다. 강도감소계수 제안식 중 SJ 제안식에 의한 역량스펙트럼 해석의 최대변위가 비탄성 시간이력해석 결과와 가장 일치하는 결과를 나타냄을 알 수 있었다.

Keywords

References

  1. 건설교통부(2005) 도로교설계기준
  2. 송종걸(2004) 역량스펙트럼 방법을 이용한 다자유도 교량의 비탄 성 지진응답 평가, 대한토목학회 논문집, 대한토목학회, 제24 권, 제3A호, pp. 541-550
  3. 송종걸, 남왕현, 정영화(2005) 횡하중 분포의 영향을 고려한 다 경간 교량의 내진성능 평가를 위한 비탄성 정적해석, 대한토목학회 논문집, 대한토목학회, 제25권 제6A호, pp. 1163- 1176
  4. 송종걸, 남왕현, 정영화(2006) 등가단자유도 방법의 영향을 고려 한 다경간 교량의 내진성능 평가를 위한 비탄성 정적해석, 대한토목학회논문집, 대한토목학회, 제26권, 제3-A호, pp. 473-484
  5. 송종걸, 김학수(2007) 근거리 및 원거리 지진에 대한 구조물의 비선형 거동을 고려한 강도감소계수 산정, 대한토목학회논문집, 대한토목학회, 제27권, 제3-A호, pp. 321-339
  6. FEMA. NEHRP guidelines for the seismic rehabilitation of buildings (FEMA 273), and NEHRP commentary on the guidelines for the seismic rehabilitation of buildings (FEMA 274). Washington (DC): Building Seismic Safety Council; 1997
  7. Applied Technology Council. Seismic evaluation and retrofit of concrete buildings-volume 1 (ATC 40). Report No. SSC 96-01 Redwood City (CA), USA; 1996
  8. ASCE-FEMA. Prestandard and commentary for the seismic rehabilitation of buildings (FEMA 356), Washington, DC, USA; 2000
  9. Applied Technology Council. Improvement of nonlinear static seismic analysis procedures (FEMA 440), ATC-55 Project, Redwood city, California, USA; 2004
  10. Applied Technology Council (1995) Structural Response Modification Factors, ATC-19 Report, Redwood city, California
  11. Chopra, A.K. and Goel, R.K. (1999) Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems, Report No. PEER-1999/02, Pacific Earthquake Engineering Research Center, University of California at Berkeley
  12. Calvi, G.M. (1995) Displacement-based seismic design of multidegree- of-freedom bridge structures, Earthquake Engineering and Structural Dynamics, Vol. 24, pp. 1247-1266 https://doi.org/10.1002/eqe.4290240906
  13. Elghadamsi, F.E. and Mohraz, B., (1987) Inelastic earthquake spectra, Earthquake Engineering and Structural Dynamics, Vol. 15, pp. 91-104 https://doi.org/10.1002/eqe.4290150107
  14. Fajfar, P. and Gaspersic, P. (1998) A simplified nonlinear method for seismic evaluation of RC bridges, Proceeding of the 6th National Conference on Earthquake Engineering, EERI, Seattle, Washington
  15. Fajfar, P. (2000) A nonlinear analysis method for performance based seismic design, Earthquake Spectra, Vol. 16, No. 3, pp. 573-592 https://doi.org/10.1193/1.1586128
  16. Fischinger, M., Beg, D., and Isakovic, T. (2004) Performance based assessment-from general methodologies to specific implementations, International Workshop on PBSD, New York, US
  17. Hidalgo, P.A. and Arias, A. (1990) New Chilean code for earthquake-resistant design of buildings, Proc. 4th U.S. Nat. Conf. Earthquake Engrg., Palm Springs, California, Vol. 2, pp. 927- 936
  18. Krawinkler, H. and Nassar, A.A. (1992) Seismic design based on ductility and cumulative damage demands and capacities, Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Elsevier Applied Science
  19. Lai, S.-P. and Biggs, J.M. (1980) Inelastic response spectra for aseismic building design, J. Struct. Div., ASCE, Vol. 106, No. ST6, pp. 1295-1310
  20. Lee, D.G., Song, J.K., and Yun, C.B. (1997) Estimation of systemlevel ductility demands for multi-story structures, Engineering Structures, Vol. 19, No. 12, pp. 1025-1035 https://doi.org/10.1016/S0141-0296(97)00010-2
  21. Mahmoud M. Hachem Bispec: a nonlinear spectral analysis program that performs bi-direction dynamic time-history analysis of pendulum system. University of California at Berkeley
  22. Miranda, E. (1993) Site-dependent strength reduction factors, J. of Struct. Engrg., ASCE, Vol. 119, No. 12
  23. Miranda, E. and Bertero, V.V. (1994) Evaluation of strength reduction factors for earthquake resistant design, Earthquake Spectra, Vol. 10, No. 2, pp. 357-379 https://doi.org/10.1193/1.1585778
  24. Nassar, A.A. and Krawinkler, H. (1991) Seismic demands for SDOF and MDOF systems, Report No. 95, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, California
  25. Newmark, N.M. and Hall, W.J. (1973) Seismic design criteria for nuclear reactor facilities, Report No. 46, Building Practices for Disaster Mitigation, National Bureau of Standards, U.S. Department of Commerce, pp. 209-236
  26. Priestley, M.J.N., Seible, F., and Calvi, G.M. (1996) Seismic design and retrofit of bridges, John Wiley & Sons, Inc
  27. Qi, X. and Moehle, J.P., (1991) Displacement design approach for reinforced concrete structures subjected to earthquakes, Report No. UCB/EERC-91/02, Earthquake Engrg. Res. Ctr., Univ. of California at Berkeley, 186 pp
  28. Riddel, R., and Bewmark, N.M. (1979) Statistical analysis of the response of nonlinear systems subjected to earthquakes, Structural Research Series No. 468, Dept. of Civ. Engrg., University of Illinois, Urbana
  29. Reinhorn, A.M., Simeonov, V., Mylonakis, G., and Reichman (1998) IDARC-BRIDGE: a computational platform for seismic damage assessment of bridge structures, Technical Report MCEER-98-0011, State University of New York at Buffalo
  30. Somervill, P., Smith, H., Puriyamurthala, S., and Sun, J. (1997) Development of ground motion time histories for phase 2 of the FEMA/SAC steel project, SAC joint venture, SAC/BD 97/04
  31. Song, J.K. and Pincheira, J.A. (2002) Spectral displacement demands of stiffness and strength degrading systems, Earthquake Spectra, Vol. 16, No. 4, pp. 817-851 https://doi.org/10.1193/1.1586141
  32. UCFyber - Cross section analysis software for structural engineers (2000) ZeventTM
  33. Villaverde, R. (1996) Simplified response-spectrum seismic analysis of nonlinear structures, Journal of Engineering Mechanics, ASCE, Vol. 122, No. 3, pp. 282-285 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:3(282)
  34. Vidic, T., Fajfar, P., and Fischinger, M. (1994) Consistent inelastic design spectra: strength and displacement, Earthquake Engineering and Structural Dynamics, Vol. 23, pp. 507-521 https://doi.org/10.1002/eqe.4290230504