• Title/Summary/Keyword: 지진성능평가

Search Result 729, Processing Time 0.021 seconds

Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness (지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가)

  • Kim, Soo Jung;Choi, Byong Jeong;Park, Ho Young;Lee, Jinwoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.

Experimental Evaluation for Seismic Performance of RC Bridge Piers with FRP Confinement (FRP 횡보강근을 이용한 RC 교각의 내진성능 평가 실험)

  • 정영수;박진영;박창규;서진원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.377-384
    • /
    • 2003
  • Recently, there are much concerns about new and innovative transverse materials which could be used instead of conventional transverse steel in reinforced concrete bridge piers. FRP materials could be substituted for conventional transverse steel because of their sufficient strength, light weight, easy fabrication, and useful applicability to any shapes of pier sections, such as rectangular or circular sections. The objective of this research is to evaluate the seismic performance of reinforced concrete bridge pier specimens with FRP transverse reinforcement by means of the Quasi-Static test. In the first task, test columns were made using FRP rope, but these specimens appeared to fail at low displacement ductility levels due to insufficient confinement of strand extension itself. Therefore, the second task was to evaluate the seismic performance of test specimens transversely confined with FRP band. Although FRP banded specimens showed lower seismic performance than the specimen with spiral reinforcing steel, it satisfied with the response modification factor, 3, required for the single column of Korea bridge roadway design code. It was concluded that FRP band could be efficiently substituted for conventional reinforcing steel.

  • PDF

An Experimental Evaluation of Seismic Performancef for Damaged Reinforced Concrete Bridge Piers. (손상된 철근콘크리트 교각의 내진성능평가를 위한 실험연구)

  • 박창규;이은희;이대형;정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.385-392
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P = 0.1 $f_{ck}$ $A_{g}$. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.y.

  • PDF

Seismic Behavior of Bridges with Sacrificial Energy-dissipating Devices (회생개념의 에너지소산장치의 적용에 따른 교량의 내진성능평가)

  • 김상효;이상우;김영훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.393-400
    • /
    • 2003
  • Various types of dampers are widely adopted to reduce the seismic damages in bridges. However, dampers may be the improper solution especially in moderate seismic regions because dampers are costly for installation and require constant maintenance during life cycle. In this study, energy-dissipating sacrificial device is proposed, which sacrifices easily substitutable bridge members and dissipates the excessive energy during seismic excitations. In turns, the inelastic behavior of sacrificial members reduces the input energy of the major members, such as piers in bridges, and may prevent the major members from serious malfunction. A simplified mechanical model is developed to represent the behavior of sacrificial devices installed in a bridge. The hysteresis energy of piers is analyzed to certify performance of device under seismic loads applied to this mechanical model. The results from this study show that the proposed sacrificial energy-dissipating device can decrease excessive hysteresis energy and reduce the damage of piers under seismic excitation. Therefore, economical enhancement of the seismic performance of bridges may be possible by employing the proposed sacrificial energy-dissipating devices.

  • PDF

Seismic Performance Evaluation for MCR of Nuclear Power Plant Isolated by FPS (FPS로 면진된 원전 주제어실의 내진 성능 평가)

  • 김대곤;김우범;서용표;문대식;김종엽
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.453-460
    • /
    • 2003
  • The objective of this study is to investigate the seismic performance for a seismically isolated main control room (MCR) of nuclear power plant. MCR was isolated by spherically shaped friction pendulum system (FPS). The FPS provided the simplest means of achieving long period in the isolation system under low gravity load. Some parametric studies were conducted with different properties of FPS. When the coefficient of friction in the sliding surface of FPS is low, the seismic performance of MCR was satisfactory However, the lateral displacement in the isolation level was rather large. To restrict this displacement into adequate range, a fluid viscous dampers were used.

  • PDF

Characteristics and Energy Absorbing Capacity for New Rockfall Protection Fence (신개념 낙석방지울타리의 특성 및 성능평가)

  • 문영종;정형조;박기준;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.461-466
    • /
    • 2003
  • The rockfall protection fences are installed to reduce rockfall damage in roads side slopes. The energy absorbing capacity of widely used rockfall protection fences is about 50kJ. But in many cases, rockfall protection fences are easily damaged even by a low level of rockfall energy. The objective of this paper is to verify the energy absorbing capacity of rockfall protection fences and investigate the behavior of them by rockfall. The LS-DYNA3D, a finite elements analysis program for dynamic movement of three dimensional objects, is used to perform the numerical simulations In the result, it is shown that rockfall protection fences absorb half of standard absorbing energy or less than it. It is inadquate for the rockfall protection fences to perform the principal function. To improve the performance of the fences, new rockfall proctection fence is proposed and numerical simulation is performed.

  • PDF

Seismic Performance Evaluation of Tube Systems with Buckling Restrained Braces (비좌굴 가새가 설치된 튜브 시스템의 내진성능 평가)

  • Yang, Jung-Ho;Lee, Joon-Ho;Kim, Jin-Koo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.191-197
    • /
    • 2006
  • In this paper 35- and 72-story tube system and trussed tube system were designed and their seismic performances were evaluated by nonlinear static analysis. According to the analysis results, the tube system structures retained high stiffness and strength; however they showed brittle failure mode due to the yielding of columns. In the case of trussed tube system, columns in the side-side buckled first followed by the buckling of the braces. When buckling-restrained braces were applied, plastic hinges formed in the lower stories gradually spreads to the higher stories, resulting in ductile behavior.

  • PDF

Performance Evaluation of Steel Moment Frame Buildings with Different Response Modification Factors (반응수정계수의 영향에 따른 철골조 빌딩의 내진 성능 평가)

  • Lee, Ki-Hak
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.201-208
    • /
    • 2006
  • This study lotuses on the seismic behavior of 3-, 9-, and 20-story steel moment resisting frame (MRF) structures designed in accordance with the 2000 International Building Code using different Response Modification factors (R factors) 8, 9, 10, 11, and 12. For a detailed case study, 30 different structures were evaluated for twenty ground motions representing the hazard level which is equal to a 2% probability exceeding in 50 years (2% in 50 years). The results showed that the current R factors provide conservative designs for the 3- and 9-story buildings for the Collapse Prevention performance objective. However, the 20-story buildings designed without using the minimum requirement of spectral acceleration CS prescribed in the IBC 2000 did not satisfy the seismic performance for Collapse Prevention performance.

  • PDF

The Study for Seismic Performance Evaluation Using SN Steel (건축구조용 압연강재(SN)를 이용한 내진성능평가에 관한 연구)

  • Oh, Sang-Moon;Ryu, Hong-Sik;Kim, Young-Ju;Chang, In-Hwa
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.241-248
    • /
    • 2006
  • By Testing tension coupon, deviation of yield strength & tensile strength of SS and SM is big but the that of SN is small relatively. So Designing weak beam type frame by using SN could be reflected well the original intention. As the strength ratios of beam and column becomes large, the absorption energy is large. The increase quantity was linear relationship, the y=0.46x+0.62 $(R^2=0.82)$

  • PDF

Seismic Assessment of Plan-irregular Wall Structures using Adaptive Modal Analysis (수정 모드해석방법을 이용한 비대칭 벽식 구조물의 내진성능평가)

  • Ha, Tae-Hyu;Hong, Sung-Gul
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.589-596
    • /
    • 2006
  • Torsional behavior of eccentric structures under seismic loading may cause stress and/or strain concentration, which result in the failure of the structures in an unexpected manner. This study propose how to assess the seismic capacity of plan-irregular RC wall structures. The seismic capacities ate expressed in terms of lateral displacement capacity of each wall. The seismic demands for displacement are assessed by so called displacement-based design approach. Those seismic capacity and demands are combined D-R coordinate, which is made up of lateral displacement and rotation angle. To expand these concepts to the inelastic region the adaptive modal analysis method is used. In addition, the failure mechanisms including torsional failure are defined on D-R coordinate. Finally, seismic assessments of two 3-story plan-irregular wall structures ate presented.

  • PDF