• Title/Summary/Keyword: 지지 모멘트

Search Result 206, Processing Time 0.024 seconds

Comparison of Wind Tunnel Test Results for Forward-Swept Wing Airplane at KARI LSWT and TsAGI T-102 (전진익형 항공기 모델에 대한 KARI LSWT와 TsAGI T-102 풍동시험결과 비교)

  • Cho, Tae-Hwan;Chung, Jin-Deog;Chang, Byeong-Hee;Lee, Jang-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.18-23
    • /
    • 2004
  • Wind tunnel test for Forward-Swept wing airplane model, a part of the Korea-Russia technical cooperation program has been conducted at both TsAGI T-102 and KARI LSWT. The results of TsAGI T-102, obtained by using a unique wire-suspension model support system, and KARI LSWT, used tripod and tandem strut arrangement configuration, are compared with various model conditions including control surface deflection such as flap, aileron, elevator and rudder. Good agreement in the value of drag-polar is observed between TsAGI T-102 and KARI LSWT data. The lateral and directional stability coefficients with rudder and aileron deflection represent a good agreement in both facility.

Evaluation of Lateral Subgrade Reaction Coefficient Considering Empirical Equation and Horizontal Behavior Range of Large Diameter Drilled Shaft (경험식을 통한 대구경 현장타설말뚝에 대한 수평지반반력계수와 수평거동 영향범위의 평가)

  • Yang, Woo-Yeol;Hwang, Tae-Hyun;Kim, Bum-Joo;Park, Seong-Bak;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • The lateral bearing characteristics of large diameter drilled shaft depend greatly on the stiffness of the pile, horizontal subgrade reaction of adjacent ground. In particular, the empirical evaluation results of the horizontal subgrade reaction coefficient which are widely used in pile design are very important factors in evaluating the lateral bearing capacity of drilled shaft because the difference in bearing capacity depends on the estimated result. Nevertheless, the evaluation of the horizontal subgrade reaction coefficient on the large diameter drilled shaft is insufficient. In addition, although the range of influence and the location of the maximum moment which is the weaken zone on the pile may be correlated and relationship of these are major consideration in determining the reinforced zone of drilled shaft, the previous studies have not been evaluated it. In this study, the field test and nonlinear analysis of large diameter drilled shaft were performed to evaluate the horizontal subgrade reaction coefficient and to investigate the relationship between the influence range 1/β of the pile and the location of the maximum moment zm. In the result, the lateral bearing capacity of drilled shaft showed a difference in results by about 190% according to the empirical equation on the horizontal subgrade reaction coefficient. And the relationship between the influence range of the pile and the location of the maximum moment was evaluated as a linear relationship depending on the soil density.

Flexural Vibrations Of Simply Supported Sectorial Plates with Simply Supported And Free Radial Edges (단순지지와 자유의 방사연단을 갖는 단순지지 부채꼴형 평판의 휨진동)

  • Han, Bong-Koo;Kim, Joo-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.217-223
    • /
    • 1998
  • 본 논문에서는 원형연단이 단순지지 되어 있을 때 단순과 자유의 방사연단 조건을 갖는 부채꼴형 평판의 휨진동에 대한 엄밀한 해석방법을 제시한다. Ritz방법을 이용하여 수직진동변위를 두가지 적합 함수식으로 가정하였다. 이러한 두가지의 적합 함수식은 (1) 수학적으로 완전한 대수삼각다항함수와, (2) 둔각 모서리에서의 휨모멘트 특이도를 고려하는 모서리함수로 구성되어있다. 본 연구에서는 방사연단의 둔각 모서리를 이루는 부채꼴형 각도의 범위에 따른 엄밀한 진동수 및 수직진동 변위의 전형적인 등고선을 제시하였다.

  • PDF

Bearing Capacity Evaluation of Hybrid Suction Bucket Foundations on Clay Under Horizontal Loads Using a Centrifuge (원심모형실험을 활용한 점토지반에 설치된 하이브리드 석션 버켓기초의 수평방향 지지력 평가)

  • Kim, Jae-Hyun;Lee, Cheol-Ju;Shin, Hee Jeong;Kim, Seong Hwan;Goo, Jeong Min;Jung, Chung Yeol;Jeon, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.61-73
    • /
    • 2023
  • Suction buckets are feasible options for offshore foundations to support subsea structures in deep water, enabling suction-induced installation by pumps. Recently, hybrid suction bucket foundations that combine single or multiple suction buckets with a mat foundation have been considered. The foundations effectively increase the load capacity while reducing construction costs. However, there is still insufficient experimental validation of hybrid suction bucket foundations regarding their bearing capacity. Furthermore, research on the horizontal load capacity under low vertical and moment loads is inadequate. In this study, we investigate the feasibility of using a hybrid suction bucket foundation for subsea installations in clay. We considered two types of hybrid suction bucket foundations: a circular mat with a single suction bucket and a square mat with multiple buckets. Centrifuge tests were performed to understand the hybrid suction bucket foundation characteristics under horizontal loads and their corresponding bearing capacity. Particularly, we verified the effect of the mat foundation and bucket embedment depth on the horizontal bearing mechanism and capacities. Results confirmed that the hybrid suction bucket foundation outperforms the single suction bucket.

Simplified Collision Analysis Method for Submerged Floating Railway Using the Theory of a Beam with an Elastic Foundation (탄성지지 보이론을 이용한 해중철도 간이 충돌해석법)

  • Seo, Sung-Il;Kim, Jin Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.202-206
    • /
    • 2013
  • A submerged floating railway is an innovative tunnel infrastructure passing through the deep sea independent of wave and wind so that high speed trains can run on it. It doesn't depend on water depth and is cost effective due to modular construction on land. The construction period can be reduced drastically. This paper introduces the concept design of a submerged floating railway, and for securing safety, proposes a method to analyze the structural behavior of the body in case of collision with a submarine. The theory of a beam with an elastic foundation was used to calculate the equivalent mass of the body so that the perfect elastic collision could be applied to calculate the collision velocity. The maximum deformation and bending moment was analyzed based on energy conservation. To verify the results, a collision analysis using a finite element analysis code was made. Comparing the results confirmed that this simplified collision analysis method gives enough accurate deformation and bending moment to be used for actual estimation in the initial design stage.

Jacking Force and Camber for Precast Concrete Slab Reinforcing (프리캐스트 콘크리트 슬래브 보강을 위한 잭킹력과 솟음)

  • Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.43-48
    • /
    • 2021
  • Precast concrete can be used to reduce construction period and enhance construct ability. However structural problems could be occurred due to the wrong application of boundary condition and misunderstanding of structural behavior in the process of segmentation of original structure system. I experienced a serious deflections and cracks due to the increase of bending moment and creep after the construction of precast concrete slab, and we learned that this is from the misunderstanding of support conditions and structure behaviors of precast slab panel. Two support columns under the precast slab are inserted to reduce the bending moment, and the camber according to jacking force should be estimated for the structural safety during the reinforcing work. A proper support condition and the flexural stiffness of precast concrete slab were applied to check the deflection and crack for existing structure by inverse analysis, and we can estimate the camber according to jacking force of the precast concrete slab, and suggest a method to make safe structure.

Experimental Study on Structural Performance of End-reinforced Steel-beam system(Eco-girder) (단부 보강한 합성보(에코거더)시스템의 구조성능에 관한 실험적 연구)

  • Chae, Heung-Suk;Ryoo, Jae-Yong;Chung, Kyung-Soo;Moon, Young-Min;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.533-541
    • /
    • 2010
  • H-shaped beams, which are constructed between columns, are used widely as slaves in steel structures. The bending moments that occur on both ends of an H-shaped beam, however, are about twice the bending moment that occurs at the center of the H-shaped beam. Because such beam is designed with maximum bending moment, it is deeper and has smaller spaces. To improve these features, if both ends of an H-shaped beam that have maximum bending moments are merely reinforced, the beams could be designed by the bending moment at the center of the H-shaped beam. To analyze the structural performance of the proposed end-reinforced beams (eco-girders). Four specimens were prepared with the following parameters: end-reinforced steel plate, reinforced bars, and reinforced studs and experimental tests of the specimens were performed.

Determination of an Optimum Initial Cable Tension Force for Cable-Stayed Bridges using the Least Square Method (최소자승법을 이용한 사장교의 적정 케이블 장력 결정)

  • Park, Yong Myung;Cho, Hyun Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.727-736
    • /
    • 2005
  • This study presents a method of determining the optimum cable tension forces for the proper initial equilibrium state of a cable-stayed bridge using the least square method. The proposed method minimizes the errors, i.e., the differences, such as the deflection and the moments of the girder and the tower, between the target values from a continuous beam by considering the cable anchor point as supports of the girder and the responses obtained from the analysis of the entire cable-stayed bridge system. Especially, the proposed method can selectively control the adjustment of the tower moment, the girder moment, and the deflections by introducing the weighing matrix. Through numerical analysis and comparisons with existing studies, the usefulness and validity of the proposed method was verified.

Consideration on joint steel poles and beams for cartenary lines (전기철도 전차선로 지지물 강관주와 강관빔의 연결부 검토)

  • Song, Joong-Ho;Cho, Keun-Chul
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1334-1340
    • /
    • 2004
  • Existing of angle assembly and angle beam joint examination with steel pole and steel beam of assembly existing anglerather then excellent enumerate, joint of beanding moment examination and economical existing show, in the futher, angle beam rather then steel I beam with all change.

  • PDF

Investigation of Lateral Resistance of Short Pile by Large-Scale Load Tests (실물 재하시험을 통한 짧은말뚝의 횡방향 저항거동 평가)

  • Lee, Su-Hyung;Choi, Yeong-Tae;Lee, Il-Wha;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.5-16
    • /
    • 2017
  • When a lateral load is applied to a short pile whose embedded depth is relatively smaller than its diameter, an overturning failure occurs. To investigate the behavior of laterally loaded short piles, several model tests in laboratory scales had been carried out, however the behavior of large moment carrying piles for electric poles, traffic sign and road lamp, etc. have not been revealed yet. This paper deals with the real-scale load tests for 750 mm diameter short piles. To simulate the actual loading condition, very large moment was mobilized by applying lateral loads to the location 8 m away from the pile head. Three load tests changing the pile embedded lengths to 2.0 m, 2.5 m, and 3.0 m were carried out. The test piles overturned abruptly with very small displacement and rotation before the failures. These brittle failures are in contrast with the ductile failures shown in the former model tests with the relatively smaller moment to lateral load ratio. Comparisons of the test results with three existing methods for the estimation of the ultimate lateral capacity show that the method assuming the rotation point at pile tip matches well when the embedded depth is small, however, as the embedded depth increases the other two methods assuming the inversion of soil pressure with respect to rotation points in pile length match better.