• Title/Summary/Keyword: 지지력 평가

Search Result 520, Processing Time 0.029 seconds

Bearing Capacity of Soft Ground Reinfoced by Geosynthetics and Sand Mat (토목섬유와 SANDMAT로 보강한 지반의 지지력 연구)

  • Ju, Jae-Woo;Park, Jong-Beom;Seo, Kyeh-Won;Jang, Min-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In order to improve the bearing capacity of soft ground for the purpose of getting a trafficability of construction vehicles, the geosynthetics-sandmat system has often been used. Yamanouchi had proposed the equation of calculating the bearing capacity about this kind of bearing mechanism, which has a soft ground-geosynthetics-sandmat system. The bearing capacity equation by Yamanouchi has been widely using in our country. However this equation includes an important contradictory concept because if the contact width of vehicles is incresed to reduce the contact pressure, the bearing capacity is decresed on the contray according to this equation. In order to investigate this contradictory concept, the bearing capacity test has been performed on the soft model ground with geosynthetics-sandmat system. From the test results about various kinds of models, the principle that explain the contradictory concept has been found and on the basis of this principle the new bering capacity equation has been proposed by modifying Yamanouchi equation.

  • PDF

Estimation of Load-Settlement Curves of Embedded Piles Combining Results of End of Initial Driving and Restrike Dynamic Pile Tests (초기항타 및 재항타 동재하시험 결과를 조합한 매입말뚝의 하중-침하량 곡선 산정)

  • Seo, Mi Jeong;Park, Jong-Bae;Park, Min-Chul;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.15-28
    • /
    • 2020
  • As the skin friction of an embedded pile is produced by the cement paste injected into the borehole, the skin friction cannot be evaluated by the end of initial driving test, which is conducted before the cement paste is cured. In addition, the total resistance of an embedded pile may not be properly evaluated during the restrike test if the base resistance is not fully mobilized because of the insufficient driven energy. The objective of this study is to suggest a new load-settlement curve of embedded piles by combining the results of the end of initial driving and restrike tests. Test piles are installed at fields by using the embedded pile method, and the results of the dynamic pile tests are analyzed using CAse Pile Wave Analysis Program (CAPWAP) after the end of initial driving and restrike tests are conducted. A new load transfer curve, which combines the behaviors of the pile base at the end of initial driving and of the pile shaft at the restrike, is suggested, and a new load-settlement curve is obtained. Subsequently, the resistances of the test piles are evaluated using the combined load-settlement curve, and compared with the results from the end of initial driving and restrike tests. The results showed that the resistances, which are evaluated using the combined load-settlement curve, may overcome the underestimation of the resistance because of the insufficient driven energy. In addition, the resistance resulted from the combined load-settlement curve may be more similar to that from the static load test because the suggested load transfer curve is closer to the behavior of the embedded pile compared to the results of end of initial driving and restrike tests. Therefore, this study demonstrates that the combined load-settlement curve may be effectively used for the evaluation of the bearing capacity of embedded piles.

Evaluation on Bearing Resistance of Transverse Members in Steel Strip Reinforcement using Pullout Tests and Theoretical Equations (인발시험과 이론식을 이용한 강재스트립 보강재에 설치된 지지부재의 지지저항 특성 평가)

  • Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon;Hong, Won-Pyo;Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, the pullout tests are conducted to evaluate pullout resistance of steel strip reinforcement with transverse members. The test results are compared with theoretical equations and then the failure mechanism of transverse members is evaluated. The bearing resistance stress(${\sigma}^{\prime}_b$) of transverse members, which is applied pullout force at 50mm displacement, is closed from punching shear failure to general shear failure. The behavior by increment of a number of transverse members became closer to general shear failure. The behavior of transverse members at maximum pullout force, which is closed to general shear failure, is indicated that it is unrelated to normal stress and a number of transverse members. However, if the allowable displacement of reinforced soil wall is considered, it is impossible to apply in design. The test results are compared with bearing resistance evaluations using Prandtl's plastic theory and cylindrical cavity expansion theory. The analysis results are indicated that the bearing resistance by pullout tests is closed to predicted result by Prandtl's plastic theory, which are located between general shear failure and punching shear failure.

  • PDF

Evaluation of the Resistance Bias Factors to Develop LRFD for Driven Steel Pipe Piles (LRFD 설계를 위한 항타강관말뚝의 저항편향계수 산정)

  • Kwak, Kiseok;Park, Jaehyun;Choi, Yongkyu;Huh, Jungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.343-350
    • /
    • 2006
  • The resistance bias factors for driven steel pipe piles are evaluated as a part of study to develop the LRFD(Load and Resistance Factor Design) for foundation structures in Korea. The 43 data sets of static load tests and soil property tests performed in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles using various methods. Based on the statistical analysis of the data, the Davisson's criterion is proved to be the most reasonable method for estimation of pile bearing capacity among the methods used. The static bearing capacity formulas and the Meyerhof method using N values are applied to calculate the design bearing capacity of the piles. The resistance bias factors of the driven steel pipe piles are evaluated respectively as 0.98 and 1.46 by comparison of the bearing capacities for both of the static bearing capacity formulas and the Meyerhof method. It is also shown that uncertainty of the static bearing capacity formulas is relatively less than that of the Meyerhof method.

Bearing Capacity of Shallow Foundation on a Finite Layer of Sandy Ground Underlain by a Rigid Base (강성저면위 유한한 두께의 모래지반에 놓인 얕은기초의 지지력)

  • Jun, Sang-Hyun;Yoo, Nam-Jae;Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.39-48
    • /
    • 2011
  • In this paper the method of estimating the bearing capacity of shallow foundation on a finite layer of sandy ground underlain by a rigid base was proposed by assessing results of the model test and the numerical analyses. For model experiments, the centrifuge tests under 1g and 20 g of gravitational levels were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sand layer (H) to the width of strip footing (B). As results of tests, bearing capacity tends to increase with the value of H/B while settlement for a given load intensity decreases. Bearing capacity also increases with relative density of the soil. In order to propose the method of estimating the bearing capacity of thin sandy layer underlain by a rigid base, values of bearing capacity factors from test results were compared with the values of modified bearing capacity factor by Mandel & Salencon (1972) considering the effect of H/B value on bearing capacity. The relation of bearing capacity factor ratio, normalizing friction angle of sandy soil, with the value of H/B was suggested so that this relation could be applied to design in the safe side. The results of numerical analyses obrained by changing the layout of footing, relative density of sandy soil and the value of H/B, were in good agreements with the suggested relation.

A Statistical Analysis on Dynamic Pile-Driving Formulas -For Evaluation of the New Formula- (말뚝의 동적(動的) 지지력(支持力) 공식(公式)의 통계적(統計的) 분석(分析) -새로운 공식(公式)의 평가(評價)를 위하여-)

  • Hwang, Jung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1983
  • A new dynamic pile-driving formula derived by the writer, in which the mechanics of stress waves and the effect of residual stresses were considered for more accurate prediction of the load carrying capacity of piles, was compared with other representative formulas through statistical analysis using the load test results. As the result, the new formula was estimated as highly accurate and reliable, with its safety factor less than 3.

  • PDF

Analysis of Correlation among Various Compaction Evaluation Methods for Estimating of the Bearing Capacity on Subgrades (노상토의 지지력 평가를 위한 다짐평가기법의 상관성 분석)

  • Lee, Joonyong;Jeoung, Jae-Hyeung;Choi, Changho;Kim, Jin-Young;Jin, Hyunwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.45-58
    • /
    • 2015
  • Even though the plate bearing test (PBT) to evaluate the load baring capacity and the field density test to evaluate the relative density are mainly used for quality control of soil compaction in Korea, use of the dynamic cone penetrometer test (DCPT) and the dynamic plate bearing test (DPBT) considering economic feasibility, rapidity, and suitability for field conditions increase to use for quality control of soil compaction. In this study, bearing capacity and relative density of subgrade with thickness of 20 cm, 30 cm, and 40 cm are estimated using PBT, DCPT, DPBT and field density test in three field compaction tests, and the relationship among various compaction evaluation methods is analyzed and discussed.

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.

Estimation of Ultimate Bearing Capacity of SCP and GCP Reinforced Clay for Laboratory Load Test Data (SCP 및 GCP 개량 점성토지반의 실내재하시험에 대한 극한지지력 산정 방법 개발)

  • Bong, Tae-Ho;Kim, Byoung-Il;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.37-47
    • /
    • 2018
  • In this study, 34 laboratory load test data were collected, and analyzed to propose the equations for predicting ultimate bearing capacity of sand compaction pile (SCP) and gravel compaction pile (GCP) reinforced clay. The collected data were compared with the ultimate bearing capacity estimated by existing theoretical equations, and the prediction accuracy of the existing theoretical equations was identified. Also, multiple regression analysis was performed to predict the ultimate bearing capacity, and the most efficient number and type of input variables were selected through error evaluation by leave-one-out cross validation. Finally, the multiple regression equations for estimating the ultimate bearing capacity of laboratory load test for SCP and GCP were proposed, and their performance was evaluated.