• Title/Summary/Keyword: 지역 기후

Search Result 3,383, Processing Time 0.026 seconds

The study of Application of Drought Index Using Measured Soil Moisture at KoFlux Tower (KoFlux 타워에서 관측된 토양수분 값을 이용한 가뭄지수 활용에 관한 연구)

  • Kim, Sooyoung;Jo, Hwan Bum;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.541-549
    • /
    • 2010
  • While the number of rainy days is decreasing, the mean annual precipitation is increasing due to abnormal climate changes caused by the global warming in Korea. Owing to the biased-concentration of rainfall during specific short terms, not only flood but also drought becomes more and more serious. From the literature, it is easily found that previous studies about flood have been intensively conducted. However, previous studies about drought have been performed rarely. This study conducted the comparison between two representative drought indexes calculated from soil moisture and precipitation. Study area was Haenam-gun, Jeollanam-do in Korea. Soil Moisture Index(SMI) was calculated from soil moisture data while the Standardized Precipitation Index(SPI) and the Palmer Drought Severity Index(PDSI) were calculated from meteorological data. All monthly data utilized in this study were observed at the KoFlux Tower. After the comparative analysis, three indexes showed similar tendency. Therefore, it is thought that the drought index using soil moisture measured at the KoFlux Tower is reasonable, which is because the soil moisture is immediately affected by all the meteorological factors.

Statistical Analyses of Soil Moisture Data from Polarimetric Scanning Radiometer and In-situ (Polarimetric Scanning Radiometer 와 In-situ를 이용한 토양수분 자료의 통계분석)

  • Jang, Sun Woo;Jeon, Myeon Ho;Choi, Minha;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.487-495
    • /
    • 2010
  • Soil moisture is a crucial factor in hydrological system which influences runoff, energy balance, evaporation, and atmosphere. United States National Aeronautic and Space Administration (NASA) and Department of Agriculture (USDA) have established Soil Moisture Experiment (SMEX) since 2002 for the global observations. SMEX provides useful data for the hydrological science including soil moisture and hydrometeorological variables. The purpose of this study is to investigate the relationship between remotely sensed soil moisture data from aircraft and satellite and ground based experiment. C-band of Polarimetric Scanning Radiometer (PSR) that observed the brightness temperature provides soil moisture data using a retrieval algorithm. It was compared with the In-situ data for 2-30 cm depth at four sites. The most significant depth is 2-10 cm from the correlation analysis. Most of the sites, two data are similar to the mean of data at 10 cm and the median at 7 cm and 10 cm at the 10% significant level using the Rank Sum test and t-test. In general, soil moisture data using the C-band of the PSR was established to fit the Normal, Log-normal and Gumbel distribution. Soil moisture data using the aircraft and satellites will be used in hydrological science as fundamental data. Especially, the C-band of PSR will be used to prove soil moisture at 7-10 cm depths.

A study on the crop switching of farmers in Jeju Islands related to the climate changes - focused on the citrus farms of the graduates of the KNCAF - (제주지역의 기후변화에 따른 농가의 작목전환 실태 -한농대 졸업생 감귤 농가를 중심으로-)

  • Kim, J.S.;Kang, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.163-179
    • /
    • 2015
  • The aim of this study is to investigate to which degree farmers did the crop switching and cultivar renewal as a confrontational strategy to climate change, and which problems they had in that process, and then to provide the supporting plans for them. We conducted a questionnaire survey of 15 citrus farmers of the KNCAP graduates in Jeju Island. Most of the survey respondents agreed to the climate change of Jeju Island and the subtropical climate of its coastal area. The farmers have experienced irregular weather such as abnormal high temperature, frequent rain, and droughts, resulting in the harmful insects and new weeds attack. As the climate change strategies, they are adopting a greenhouse culture system, improving a soil drainage using reorganization of planting space, making a new pest management program, and trying to switch a crop to subtropical fruits. It is expected that 50% of the survey respondents have changed their crops or will do; and 73 % of them have changed cultivar or have a plan to do. Only a few farmers directly pointed to a reason for their efforts to change the crops or to renew the cultivars as the anti-climate change strategy, however, most farmers answered the reason was to increase profitability by meeting their consumers' tastes. Presently, it is not the anti-climate change strategy but increase of profitability by meeting the consumers' needs the reason why most of the survey respondents have changed their crops or renewed the cultivars, while a few of them switched their crops to a subtropical fruit trees due to climate change. On the crop switching, they had some difficulties such as a labor shortage, availability of land, operating costs and instable income. On the cultivar renewal, also, they encountered the lack of cultivating techniques for new cultivars and the dim future for the new market. In long-term perspective, Jeju's farmers need new information and educational programs about the effect of climate change on agriculture of Jeju, and cultivation techniques for new crops and new cultivars.

Relationship between Grain Size and Organic Carbon Content of Surface Sediments in the Major Estuarine Areas of Korea (국내 주요 하구역 표층퇴적물의 입도와 유기탄소 함량 관계)

  • BOO-KEUN KHIM;JU-YEON YANG;HYUK CHOI;KWANGKYU PARK;KYUNG HOON SHIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.158-177
    • /
    • 2023
  • An estuary is a transitional water area that links the land and sea through rivers and streams, transporting various components from the land to the sea, which plays an important role in determining primary productivity in the coastal environment, and this coastal ecosystem captures a huge amount of carbon into biomass, known as blue carbon, which mitigates climate change as a potential carbon reservoir. This study examined the variation of mean grain size and organic carbon content of the surface sediments for 6 years and analyzed their relationship in the western and southern estuarine areas (Han River Estuary, Geum River Estuary, Yeongsan River Estuary, Seomjin River Estuary, and Nakdong River Estuary) and the East Sea upwelling area. During the sampling period (2015 to 2020), seasonal variation of both properties was not observed, because their variations might be controlled by diverse oceanographic environments and hydrographic conditions within each survey area. However, despite the synoptic problem of all samples, the positive relationship was obtained between the averages of mean grain size and organic carbon content, which clearly distinguishes each survey area. The unique positive relationship in all estuarine areas implies that the same process by sediment clay particles is important in the organic carbon accumulation. However, additional important factor may be expected in the organic carbon accumulation in the East Sea upwelling area. Further necessary data (sedimentation rate, dry bulk density etc) should be required for the estimation of carbon stock to evaluate the major estuaries in Korea as potential carbon reservoirs in the coastal environment.

Strength and Thermal Properties of Concrete for Replacement Fine Aggregate with Biochar (잔골재를 바이오차로 치환한 콘크리트의 강도와 열적 특성)

  • Kyoung-Chul Kim;Kwang-Mo Lim;Min-Su Son;Young-Seok Kim;Kyung-Taek Koh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.425-432
    • /
    • 2023
  • In this study, we aim to develop a carbon-reducing concrete technology by incorporating biochar. Performance evaluation experiments were conducted on concrete mixtures containing biochar with insulating and carbon-capturing properties, which are essential for key infrastructure sectors such as construction and tunnels. Concrete mixtures were designed with different biochar incorporation rates of 0 %, 5 %, 10 %, 15 %, and 20 %, as w ell as w ater-to-binder ratios of 0.25, 0.30, 0.35, and 0.40. To assess the physical properties of each mixture, unit weight, total porosity, and permeability were measured, while mechanical properties were determined through the measurement of concrete compressive and flexural strengths. Key factors for enhancing the insulating effect of carbon-reducing concrete containing biochar were identified through regression analysis, indicating a close correlation among biochar incorporation rate, unit weight, concrete strength, and thermal conductivity. It is anticipated that it can be utilized as an insulating material to enhance thermal performance in northern regions with severe winter climates.

Development of Forest Garden Model Based on Structural Characteristics of Forest Community in Korea (우리나라 산림군집의 경관구조 특성기반 숲정원 모델의 개발)

  • Seung-Hoon Chun;Yoon-Jung Cha;Sang-Gil Park;Jun-Gyu Bae;Kyung-Mee Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.237-249
    • /
    • 2023
  • This study was carried to establish a new landscape-oriented gardening model based on climate, vegetation, and forest landscape characteristics. In addition, innovative forest garden models were suggested through an integrated approach to the ecological characteristics of forest vegetation communities and existing garden planting types. For the study, the key landscape elements that make up the main forest vegetation community were identified. And the vertical layers and horizontal distribution patterns of the community structure were typified by diagnostic species and their growth forms & habits such as dominant species, character species, and differential species, and degree of dominance-sociability. Based on this, a standardized vegetation structure and formation was developed by stratifying the landscape into main features, minor features, and detailed features according to visual dominant elements. Also, the applicability of the forest garden model was examined by applying the concept of borrowing landscape to representative deciduous broadleaf forests in the temperate northern region of Korea. Additionally, an integrated forest garden models based on the conceptual definition and typology of forest gardens, and a strategic approach to forest vegetation were proposed

Prediction of Carbon Accumulation within Semi-Mangrove Ecosystems Using Remote Sensing and Artificial Intelligence Modeling in Jeju Island, South Korea (원격탐사와 인공지능 모델링을 활용한 제주도 지역의 준맹그로브 탄소 축적량 예측)

  • Cheolho Lee;Jongsung Lee;Chaebin Kim;Yeounsu Chu;Bora Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2023
  • We attempted to estimate the carbon accumulation of Hibiscus hamabo and Paliurus ramosissimus, semimangroves native to Jeju Island, by remote sensing and to build an artificial intelligence model that predicts its spatial variation with climatic factors. The aboveground carbon accumulation of semi-mangroves was estimated from the aboveground biomass density (AGBD) provided by the Global Ecosystem Dynamics Investigation (GEDI) lidar upscaled using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images. In Jeju Island, carbon accumulation per unit area was 16.6 t C/ha for H. hamabo and 21.1 t C/ha for P. ramosissimus. Total carbon accumulation of semi-mangroves was estimated at 11.5 t C on the entire coast of Jeju Island. Random forest analysis was applied to predict carbon accumulation in semi-mangroves according to environmental factors. The deviation of aboveground biomass compared to the distribution area of semi-mangrove forests in Jeju Island was calculated to analyze spatial variation of biomass. The main environmental factors affecting this deviation were the precipitation of the wettest month, the maximum temperature of the warmest month, isothermality, and the mean temperature of the wettest quarter. The carbon accumulation of semi-mangroves predicted by random forest analysis in Jeju Island showed spatial variation in the range of 12.0 t C/ha - 27.6 t C/ha. The remote sensing estimation method and the artificial intelligence prediction method of carbon accumulation in this study can be used as basic data and techniques needed for the conservation and creation of mangroves as carbon sink on the Korean Peninsula.

Growth Characteristics of Diabelia spathulata Siebold & Zucc. Population, a Rare plant in Korea (희귀식물 주걱댕강나무 개체군의 생육 특성)

  • Jeong Gul Jang;Sung-Tae Yu;Byung-Do Kim;Myung-Hoon Yi;Hye-Yeon Kwon;Chae-Sun Na;Da-Hyun Lee;Ki-Ho Kang
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.19-19
    • /
    • 2021
  • 경남 양산의 천성산에서만 생육하는 산림청·국립수목원 지정 희귀식물(Critically Endangered, CR) 주걱댕강나무 개체군을 대상으로 20개소의 방형구(10×10m, 100m2) 내 개체의 특성(개체수, 개화, 결실 등), 종자의 활력검정, 차광처리에 따른 생육 특성 및 우리나라 전역의 생육가능성에 대해 알아보았다. 20개소의 대상지에서 확인한 개체수는 총 3,270개체이며, 평균 개체밀도는 1.635/m2이다. 평균 수고는 1.1m 정도이며, 평균개화율은 27.37%이고 개화는 1.0~1.8m(평균수고 1.39m) 수고에서 집중되었다. 한편, 결실률은 평균 1.67%로 매우 낮았다. 종자의 크기는 평균 너비 0.27mm, 높이 0.18mm 정도로 너무 작아 X-ray 촬영을 통한 충실검정은 확인할 수 없었다. 종자를 1% Agar배지에 종자를 치상한 후 온도조건(15, 20, 25℃)에 따른 실험 및 온도(15, 20, 25℃)와 GA3 농도(100, 250, 500PPM)처리 실험 모두 발아율은 0%였다. 결실률이 매우 낮고, 종자 발아율 또한 낮으며 지하경을 뻗는 특성으로 보아 종자는 휴면종자이며 영양생장을 취하는 것으로 판단된다. 차광처리에 따른 생육 특성 실험 결과, 신초는 평균 30.6mm 성장, 엽록소 평균 함량 25.30, 잎의 수 평균 8.32개, 잎 길이 평균 35.93mm, 잎 폭 평균 20.37mm정도 성장하여 엽면적은 평균 761.10mm로 나타났다. 생육은 조도계를 활용한 실 차광률로 볼 때, 67.8% > 82.8% > 88.2% > 43.2% > 91.9%의 순서로 나타났다. 주걱댕강나무 자생지 내 수관열림도가 21.86%로 이를 차광률로 환산할 경우 70%내외의 차광률에서 생육이 효율적인 것을 확인하였다. 기후대별로 5개소에 이식한 주걱댕강나무는 이듬해까지 모두 생육이 원활하였다. A. spathulata를 Diabelia ionostachya종들과 가까운 유연관계를 가진다는 연구에서 D. ionostachya 샘플은 위도상 강원도 고성군에 속하고 있어 우리나라 대부분 지역에서 식재가 가능할 것으로 판단된다.

  • PDF

Accident Risk Consequences Analysis for Operating a Hydrogen Refueling Station in Urban Railway Site (도심 내 철도부지 수소충전소 운영을 위한 사고 위험 영향 분석)

  • Jae Yong Lee;Deokkyu Youn;Chul-Ho Lee;Jaeyoung Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.70-77
    • /
    • 2023
  • In response to climate change, each country is proposing a goal to reduce greenhouse gases in its energy supply and demand plan, and the use of hydrogen gas is a topic that is always prioritized as an energy resource for implementation. A popular way to use this hydrogen gas is the use of hydrogen fuel cell vehicles, and expansion of hydrogen charging stations is essential for using these hydrogen fuel cell vehicles. However, there are several limitations to the expansion of hydrogen refueling stations, the most representative of which is resident acceptance. Most of the hydrogen charging stations currently built in Korea are located in the outskirts with low population density, so the inconvenience to hydrogen fuel cell vehicle users has not been resolved, and as a result, there has been no progress in the spread of hydrogen fuel cell vehicles. In this paper, we analyzed the consequences of accident damage to determine the risks of constructing a hydrogen charging station on a railroad site frequently used by citizens. The target hydrogen charging station site was a railroad depot in Busan, and there are trains, national highways, and commercial facilities around this site. Assuming the worst-case scenario, we would like to consider the safety of the hydrogen refueling station site by analyzing the area affected by the accident and its consequence.

Analysis of Optimal Index for Heat Morbidity (온열질환자 예측을 위한 최적의 지표 분석)

  • Sanghyuck Kim;Minju Song;Seokhwan Yun;Dongkun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • The purpose of this study is to select and predict optimal heatwave indices for describing and predicting heat-related illnesses. Regression analysis was conducted using Heat-related illness surveillance system data for a number of heat-related illnesses and meteorological data from the Korea Meteorological Administration's Automatic Weather Station (AWS) for the period from 2021 to 2023. Daily average temperature, daily maximum temperature, daily average Wet Bulb Globe Temperature (WBGT), and daily maximum WBGT values were calculated and analyzed. The results indicated that among the four indicators, the daily maximum WBGT showed the highest suitability with an R2 value of 0.81 and RMSE of 0.98, with a threshold of 29.94 Celsius. During the entire analysis period, there were a total of 91 days exceeding this threshold, resulting in 339 cases of heat-related illnesses. Predictions of heat-related illness cases from 2021 to 2023 using the regression equation for daily maximum WBGT showed an accuracy with less than 10 cases of error annually, demonstrating a high level of precision. Through continuous research and refinement of data and analysis methods, it is anticipated that this approach could contribute to predicting and mitigating the impact of heatwaves.